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1  | INTRODUC TION

Vertebrates harbor diverse microbial communities in their guts (Ley 
et al., 2008; Qin et al., 2010) and these so-called gut microbiota 
(GM) are involved in many interactions with the host. In addition 
to its effect on gut function (Jumpertz et al., 2011; Sekirov, Russell, 

Antunes, & Finlay, 2010), interactions with the host’s immune system 
have important consequences for the host’s health and fitness. The 
different species comprising the GM regulate the host immune sys-
tem contribute to its development during early ontogenetic stages 
(Belkaid & Hand, 2014; Kim, Park, & Kim, 2014; Sjögren et al., 2009; 
Wu & Wu, 2012) and affect the host’s capacity to resist invading 
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Abstract
The vertebrate gastrointestinal tract is inhabited by a diverse community of bacteria, 
the so-called gut microbiota (GM). Research on captive mammalian models has re-
vealed tight mutual interactions between immune functions and GM. However, our 
knowledge of GM versus immune system interactions in wild populations and non-
mammalian species remains poor. Here, we focus on the association between GM 
community structure and immune response measured via the phytohaemagglutinin 
(PHA) skin swelling test in 12-day-old nestlings of a passerine bird, the barn swallow 
(Hirundo rustica). The PHA test, a widely used method in field ecoimmunology, as-
sesses cell-mediated immunity. GM structure was inferred based on high-throughput 
16S rRNA sequencing of microbial communities in fecal samples. We did not find any 
association between PHA response and GM diversity; however, our data revealed 
that the intensity of PHA response was correlated with differences in GM composi-
tion at the whole-community level. Ten bacterial operational taxonomic units corre-
sponding to both putative commensal and pathogens were identified as drivers of 
the compositional variation. In conclusion, our study suggests existence of GM versus 
immune system interactions in a free-living nonmammalian species, which 
corresponds with previous research on captive vertebrates.

K E Y W O R D S

fitness, immunity, inflammation, metabarcoding, microbiome, symbiosis

www.ecolevol.org
http://orcid.org/0000-0001-9375-9814
http://orcid.org/0000-0002-2657-5916
http://orcid.org/0000-0002-9213-0034
http://creativecommons.org/licenses/by/4.0/
mailto:jakubkreisinger@seznam.cz


9794  |     KREISINGER et al.

pathogens (Ivanov et al., 2009). Simultaneously, the host supports 
a wide range of mechanisms, usually linked with the immune genes, 
that regulate GM content (Benson et al., 2010; Bolnick et al., 2014).

Most current research focussed on interactions between GM, 
and the host immune system has used captive-bred animals as a 
model. However, both taxonomic and functional composition var-
ies considerably between wild and captive populations (Kreisinger, 
Čížková, Vohánka, & Piálek, 2014; McKenzie et al., 2017). Similarly, 
both immune parameters and their interindividual variation differ 
between wild and captive populations due to the altered genetic 
background of laboratory strains, a lower prevalence of para-
sites and pathogens and less variation in biotic and abiotic factors 
involved in immune trait modulation under captive conditions 
(Boysen, Eide, & Storset, 2011; Flies, Mansfield, Grant, Weldele, & 
Holekamp, 2015). Hence, results for GM versus immune system in-
teractions obtained from captive populations do not necessarily re-
flect the selective forces that shape the host’s immune system over 
GM-associated coevolutionary history (Maizels & Nussey, 2013). 
Moreover, our knowledge on host immune system versus GM in-
teractions is largely based on mammalian species hosting different 
GM and having distinct immune system than other vertebrate taxa. 
Specifically, bacteria from the Firmicutes and Bacteroidetes phyla 
typically dominate in the mammalian GM (Ley et al., 2008), whereas 
nonmammalian vertebrate GM may comprise taxonomically more 
diverse bacterial consortia (Kropáčková, Těšický, et al., 2017; Sullam 
et al., 2012). Consequently, further studies dealing with free-living, 
nonmammalian species are essential for a deeper understanding of 
the evolutionary forces shaping interactions between GM and the 
host’s immune system.

Here, we study the associations between GM structure and im-
mune response in nestlings of a free-living passerine bird, the barn 
swallow (Hirundo rustica). The barn swallow is a migratory, insectiv-
orous species with complex social system that breeds in colonies 
(Cramp & Perrins, 1993; Petrželková et al., 2015). The GM of barn 
swallows and other birds differs from that of conventional mamma-
lian models (Hird, Carstens, Cardiff, Dittmann, & Brumfield, 2014; 
Kropáčková, Těšický, et al., 2017; Waite & Taylor, 2014), which 
makes birds a valuable model group for gaining a deeper insight into 
GM versus immune system interactions. Various aspects of immune 
system function have previously been studied in barn swallows and 
other free-living birds, predominantly related to reproductive behav-
ior and sexual selection (Møller, 2001; Saino, Ambrosini, Martinelli, 
& Møller, 2002; Saino, Ferrari, Romano, Martinelli, & Møller, 2003). 
However, there have been few studies aimed at testing the associa-
tion between immunity and associated microbial communities (Ruiz-
Rodríguez et al., 2009).

We analyzed fecal microbiota profiles using high-throughput 
sequencing of 16S rRNA amplicons as a proxy for GM. Immune re-
sponse was assessed via the phytohaemagglutinin (PHA) skin swelling 
test, which is the most widely used method for assessment of cell-
mediated response in field ecoimmunology (Møller, 2001; Saino et al., 
2002, 2003; Tella, Lemus, Carrete, & Blanco, 2008). The PHA assay is 
traditionally believed to reflect adaptive immune response mediated 

predominantly by T cells (Goto, Kodama, Okada, & Fujimoto, 1978; 
Tella et al., 2008). However, recent research suggests that immune 
mechanisms involved in PHA-induced swelling are more complex, 
comprising a strong component of innate immunity (Vinkler, Bainová, 
& Albrecht, 2010; Vinkler, Schnitzer, Munclinger, & Albrecht, 2012). A 
stronger PHA response is typically interpreted as beneficial due to its 
positive association with fitness- and condition-related traits (Bowers 
et al., 2014). Given the complex immunological background of PHA 
swelling, however, this may not hold universally. There are numer-
ous examples showing no, or even a negative, relationship between 
PHA responsiveness and body condition, physiological stress, or 
health status (Møller & Petrie, 2002; Saks, Karu, Ots, & Hõrak, 2006; 
Vinkler et al., 2012). Despite these complexities, it is worth explor-
ing the potential correlations between GM and PHA responsiveness 
as PHA-induced swelling is the most widely studied trait in ecoim-
munological literature. In addition, previous research supports both 
positive (Saks et al., 2006) and negative (Merlo, Cutrera, & Zenuto, 
2016) association between gut infection by eukaryotic parasites and 
PHA responsiveness, suggesting that extending such research on 
prokaryotic communities inhabiting the gut could be potentially fruit-
ful. We therefore combine data on GM profiles with measures of PHA 
swelling in order to test whether there is any association between 
GM diversity and immune response in barn swallows. We also assess 
whether interindividual variation in PHA response is correlated with 
differences in GM composition and which specific bacterial taxa de-
termine any such variation in PHA response.

2  | METHODS

2.1 | Field data acquisition

Data on fecal microbiota and PHA response were collected during 
2014 (late April – late June) from barn swallow nestlings (n = 58) dis-
tributed in 32 clutches (Czech Republic, 49° 4′ 7.762″ N, 14° 42′ 
36.521″ E, Supporting Information Table S1).

Tissue thickness of the left wing web (patagium) of 12-day-old 
barn swallow nestlings was measured using a standard thickness 
gauge (Mitutoyo, Japan). Subsequently, the PHA solution (0.10 mg of 
PHA-P dissolved in 20 μl of DPBS) was injected and the magnitude of 
the swelling reaction was measured after 24 hr. Both pre- and post-
treatment tissue thickness measurements were performed three 
times by the same person (A.P., accuracy ~0.01 mm). Repeatability 
of these measurements was high (intraclass correlation coeffi-
cient = 0.973 and 0.967 for pre- and posttreatment measurements, 
respectively). Consequently, the average tissue thickness increment 
between pre- and posttreatment measurements was used as an 
index of PHA-induced swelling in subsequent analyses.

Fecal samples of 12-day-old barn swallow nestlings were col-
lected prior PHA injection, placed in sterile cryotubes (Simport, 
Canada), and stored in liquid nitrogen during field works. After the 
field works, samples were preserved under −80°C until DNA ex-
tractions. Further details on fecal sample collection and storage, 
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together with a description of breeding site, are provided elsewhere 
(Kreisinger et al., 2017).

All field procedures were conducted in accordance with the 
Guidelines for Animal Care and Treatment of the European Union 
and approved by the Animal Care and Use Committees of the 
Czech Academy of Sciences (041/2011) and Charles University 
(4789/2008-0).

2.2 | Microbiome profiling and bioinformatic 
processing of 16S rRNA data

Metagenomic DNA was isolated from fecal samples using PowerSoil 
Mo Bio kits (Qiagen). The V3-V4 region of 16S rRNA was ampli-
fied using S-D-Bact-0341-b-S-17 (CCTACGGGNGGCWGCAG) and 
S-D-Bact-0785-a-A-21 (GACTACHVGGGTATCTAATCC) primers 
(Klindworth et al., 2013), tagged with 10 bp oligonucleotide indi-
ces for demultiplexing. Technical PCR duplicates were prepared 
for all samples in order to check for microbial profile consistency. 
Sequencing libraries were prepared using TruSeq Nano Kits and se-
quenced on Illumina Miseq using v3 chemistry.

The resulting 300 bp long paired-end reads were merged using 
Pear (Zhang, Kobert, Flouri, & Stamatakis, 2014) and demultiplexed 
using Mothur (Schloss et al., 2009). Lotus pipeline (Hildebrand, 
Tadeo, Voigt, Bork, & Raes, 2014) was used for quality filtering 

(elimination of sequences, if average Q < 30 and if average Q within 
50 bp sliding dropped below 25) and elimination of chimeric se-
quences. Subsequently, UPARSE algorithm (Edgar, 2013) imple-
mented in Lotus was used for clustering of resulting high-quality 
reads at 97% similarity threshold to operational taxonomic units 
(OTUs). Taxonomic assignment of representative sequences for each 
OTU was performed using RDP classifier and Green Genes database 
(v. 13_5, DeSantis et al., 2006) as a reference. Representative se-
quences were aligned using PyNAST (Caporaso et al., 2010) and a 
phylogenetic tree constructed using FastTree (Price, Dehal, & Arkin, 
2010). The OTU table, sample metadata, taxonomic annotations, 
and phylogenetic tree were stored as a phyloseq object (McMurdie 
& Holmes, 2013) for further analysis. OTUs not assigned to phylum 
level, or those classified as chloroplasts (1% and 8.2% reads, respec-
tively), were considered as sequencing artefacts and diet contam-
inants, respectively, and eliminated from all downstream analyses. 
Details on laboratory procedures associated with microbiome profil-
ing and bioinformatic processing of sequencing data were provided 
in a previous study on this species (Kreisinger et al., 2017).

2.3 | Statistical analysis

Barn swallow GM taxonomic content was visually summarized using 
Krona tools (Ondov, Bergman, & Phillippy, 2011). All the statistical 

F IGURE  1 Bar plots indicating proportions of dominant bacterial phyla and classes in barn swallow fecal microbiota samples
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analyses were conducted using packages running under R 3.4.3 soft-
ware (R Core Team, 2016). As we detected significant correlation 
between PHA response and Julian date of fecal sample collection 
(Pearson r = 0.324, p < 0.01), we controlled all subsequent statistical 
analyses for effect of sampling date. Association between microbiota 
diversity (i.e., number of observed OTUs, Chao1 diversity estimates 
and Shannon diversities) and PHA response or Julian date of sample 
collection was tested using linear mixed-effect models (LME, R pack-
age lme4; Bates, Mächler, Bolker, & Walker, 2015) with Gaussian dis-
tribution of errors. Nest identity was included as a random intercept. 
Next, weighted UniFrac (Lozupone & Knight, 2005) and Bray–Curtis 
community dissimilarity between samples were calculated based 
on sample-specific OTU proportions. The effect of PHA-induced 

response and Julian date was assessed using distance-based re-
dundancy analysis (db-RDA, Legendre & Anderson, 1999), with the 
matrix of between-sample dissimilarities included as a response. 
Permutation-based ANOVA (anova.cca function from R package 
vegan, Oksanen et al., 2013) was then used to test for significance 
of the constrained db-RDA axes. According to these analyses, only 
the first constrained db-RDA axis was significant (p < 0.001 for both 
UniFrac and Bray–Curtis dissimilarity), and the effect of the second 
constrained db-RDA axis was nonsignificant (p > 0.3 in both cases). 
We then extracted the scores for the first db-RDA axis and tested 
whether they were significantly associated with PHA response and/
or Julian date using LME. We argue that this analysis method is pref-
erable to the default anova.cca, as this function cannot effectively 

F IGURE  2 Summary of barn swallow GM taxonomic content. Rare taxa (represented by <2% reads) are labeled as “others”
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account for pseudoreplications induced by sampling multiple indi-
viduals from the same nest.

Associations between abundance of OTUs and PHA response 
were tested using generalized LMEs from R package BhGLM for data 
with negative binomial distribution of errors (Zhang et al., 2017). 
OTU-specific read counts within individual samples were included as 
a response, while Julian date of sample collection and PHA response 
were included as explanatory variables. Log-transformed total num-
ber of reads per sample was specified as model offset (i.e., assuming 
number of reads per given OTU to be proportional to total number 
of reads per individual sample) and clutch identity as random effect. 
The qvalue method (Storey & Tibshirani, 2003) was subsequently 
used to account for false discoveries due to multiple testing. To op-
timize sensitivity of OTU-level analyses, we applied “independent 
filtering” procedure (Bourgon, Gentleman, & Huber, 2010) using 
DESeq2 R package (Love, Huber, & Anders, 2014) and considered 
only OTUs that passed this step (n = 196 OTUs, representing 96% 
of all high-quality reads). Procrustean analysis revealed high congru-
ence between original and subsetted microbial profiles (Procrustean 
r = 0.9974, Procrustean sum of squares = 0.0052, p < 0.0001), sug-
gesting that resulting OTU subset covered representative variation 
in the GM content.

3  | RESULTS AND DISCUSSION

After all filtering steps, we obtained 947,675 high-quality 
reads with a median sequencing depth per sample of 13,798 
(range = 1,112–44,777) and an average number of 97% UPARSE 
OTUs per sample of 153.6 (range = 67–443). In line with our pre-
vious study on barn swallow nestlings from the same population 
(Kreisinger et al., 2017), the most abundant bacterial phyla were 
Proteobacteria (dominated by Serratia, Pantoea, Providencia, and 
Diplorickettsia) Firmicutes (dominated by genera Enterococcus, 
Lactococcus, Lactobacillus, and unassigned Clostridia), Bacteriodetes 
(dominated by the genus Dysgonomonas), and Actinobacteria. All 
Actinobacterial genera were represented by low percentage of 
reads (<1%), with Rhodococcus (0.58% of all read), Rothia (0.56% of 

reads), and Corynebacterium (0.55% of reads) being the most abun-
dant (Figures 1 and 2).

We did not observe any association between PHA response and 
GM diversity (LME: p > 0.2 for all alpha diversity measures; Table 1). 
In theory, a correlation between immune functions and GM diver-
sity might be expected as mutual interactions between immune gene 
allelic diversity (Bolnick et al., 2014), intensity of immune response 
(Hawley, Sydenstricker, Kollias, & Dhondt, 2005), parasite load (Kurtz 
et al., 2004; Madsen & Ujvari, 2006; Sommer, 2005), and overall 
GM diversity have repeatedly been reported in previous studies. 
However, consistent with our data, number of previous studies did 
not find any straightforward correlation between GM richness and 
immune phenotype (Chang, Hao, Offermanns, & Medzhitov, 2014; 
Jones et al., 2013; Vatanen et al., 2016).

Despite the lack of any relationship between GM diversity 
and PHA response, we observed significant correlation between 
magnitude of PHA swelling and variation in GM composition at 
the whole-community level, suggesting that individuals with sim-
ilar GM composition had a similar PHA response. This association 
was specifically implied based on db-RDA ordination (Figure 3). In 
addition, LMEs running on scores for the first db-RDA axis (using 
both Bray–Curtis and weighted UniFrac distance) revealed a sig-
nificant effect of PHA response after statistical control for Julian 
date of sample collection, while the effect of Julian date itself was 
significant only in the case of db-RDA for Bray–Curtis dissimilarity 
(Table 2).

According to OTU-centered negative binomial LMEs, ten OTUs 
represented by relatively low number of reads (~2.2% in total) ex-
hibited significant association with the intensity of PHA response 
(Table 3 and Supporting Information File S1). Two of these OTUs, 
belonging to Lactic Acid Bacteria from genus Enterococcus and 
Lactococcus, were negatively related to PHA swelling. Intensity 
of PHA-induced swelling seems to strongly reflect general proin-
flammatory potential of given individual (Vinkler et al., 2010). 
Consequently, observed negative correlation between Lactococcus 
abundances and PHA response can be related to anti-inflammatory 
effect that was previously described for some probiotic species 
from this genus (Han, Lee, Park, & Paik, 2015; Luerce et al., 2014). 

Response Explanatory var. Estimate SE χ2 Δdf p

Chao1 Intercept 1.897 0.079

Julian −0.001 0.001 3.364 1 0.067

PHA 0.028 0.024 1.388 1 0.239

Observed Intercept 1.780 0.096

Julian −0.001 0.001 0.933 1 0.334

PHA 0.026 0.030 1.149 1 0.284

Shannon Intercept 0.600 0.685

Julian 0.000 0.005 0.002 1 0.968

PHA 0.152 0.208 0.645 1 0.422

Note. GM: gut microbiota; LME: linear mixed-effect model; OTUs: operational taxonomic units; PHA: 
phytohaemagglutinin.

TABLE  1 Effect of PHA response and 
Julian date on GM alpha diversity 
(assessed as number of observed OTUs, 
Chao1 predictions of total GM diversity 
and Shannon index). Shown are LME 
estimates (Estimate) and corresponding 
standard errors (SE), deviance changes 
due to elimination of a given term from 
the model (χ2) and associated degrees of 
freedom (Δdf), and probability values (p)
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There are several plausible explanations for the negative correla-
tion between abundances of Enterococcus OTU and PHA response. 
Similarly, as in the case of Lactococcus, some Enterococcus species 
exhibit probiotic properties. However, Enterococcus genus includes 
also several pathogenic strains, whose infection can directly af-
fect host’s immunity (Fisher & Phillips, 2009). Unfortunately, we 
are not able to distinguish between these two alternatives as 16S 
rRNA region used in our study does not allow reliable species-
level assignment of this particular OTU. Interestingly, association 
of Enterococcus loads and phenotype was observed in another 
study on passerine juveniles (González-Braojos, Vela, Ruiz-de-
Castañeda, Briones, & Moreno, 2012). In particular, Enterococcus 
loads were negatively correlated with growth rates, that is, the 
phenotype trait that can covary with PHA response (Lifjeld, Dunn, 
& Whittingham, 2002) and other immune parameters as well (van 
der Most, de Jong, Parmentier, & Verhulst, 2011). Reduced PHA 
response was also associated higher abundances of OTU from 
genus Rickettsia, an insect-borne intracellular pathogen (Parola & 
Didier, 2001) commonly detected bird GM (Kropáčková, Těšický, 
et al., 2017).

On the contrary, intensity of PHA response tended to in-
crease with increasing abundance of OTUs from genus Bacillus, 
Staphylococcus (putatively Staphylococcus saprophyticus; 100% 
identity according to blastn searches), Dysgonomonas and 
Streptococcus. Bacteria from genus Bacillus include many common 
gut symbionts of vertebrates. On the other hand, S. saprophyticus 
is opportunistic pathogen causing inflammatory diseases of urinary 
tract in humans (Hovelius & Mårdh, 1984) and Dysgonomonas can 
cause gut inflammation in immunocompromised human subjects 
(Bangsborg, Frederiksen, & Bruun, 1990). Both these OTUs were 
previously detected in bird GM (Kropáčková, Pechmanová, et al., 
2017; Kropáčková, Těšický, et al., 2017; Xenoulis et al., 2010). 
However, their effect on physiology and health of avian are still 
unknown. Many Streptococcus species are vertebrate commensal, 
but some represent opportunistic pathogens of various vertebrate 
taxa including birds (Benskin, Wilson, Jones, & Hartley, 2009). 
Unfortunately, our data did not allow reliable species-level assigna-
tion of this particular OTU.

The contrasting effect of Rickettsia and Staphylococcus OTUs 
on PHA response suggests that putative bacterial pathogens can 
be associated both with attenuation and enhancement of PHA 
response. A similar contradictory pattern has been observed 

F IGURE  3 Db-RDA ordination of GM in barn swallow nestlings. 
Two dissimilarity types between samples were used as a response 
(Bray–Curtis and weighted UniFrac), while PHA swelling and Julian 
date of sampling were included as explanatory variables. Variation 
along the first two constrained axes is shown. Strength of PHA 
response (in millimeters) is indicated by color intensity of plotting 
characters

Response Explanatory var. Estimate SE χ2 Δdf p

Bray–Curtis Intercept −5.053 0.953

Julian 0.024 0.006 13.479 1 <0.001

PHA 0.911 0.294 8.724 1 0.003

UniFrac Intercept −2.074 1.262

Julian 0.007 0.008 0.871 1 0.351

PHA 0.769 0.366 4.523 1 0.033

Note. GM: gut microbiota; LME: linear mixed-effect model; PHA: phytohaemagglutinin.

TABLE  2 Effect of PHA response and 
Julian date on GM composition 
(corresponding to the first db-RDA axis 
for weighted UniFrac and Bray–Curtis 
dissimilarity). Shown are LME estimates 
(Estimate) and corresponding standard 
errors (SE), deviance changes due to 
elimination of a given term from the 
model (χ2) and associated degrees of 
freedom (Δdf), and probability values (p)
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in the case of putative commensal or beneficial bacteria, with 
Lactococcus OTU abundance, in particular, being negatively re-
lated to PHA swelling and Bacillus sp. being positively related. 
We propose that these seemingly contrasting results are related 
to both interaction complexity between bacteria and the verte-
brate immune system and to the complex immunological back-
ground of the PHA swelling response. Further studies targeting 
specific components of the bird immune system are required, 
therefore, in order to obtain a better understanding of how (a) 
host immune system interacts with GM and (b) how the overall 
pattern of such interactions differ from well-established mam-
malian models.
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