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Abstract

Understanding the role of microbiota as reproductive barriers or sources of adaptive
novelty in the fundamental biological phenomenon of speciation is an exciting new challenge
necessitating exploration of microbiota variation in wild interbreeding species. We focused on
two interbreeding cyprinid species, Chondrostoma nasus and Parachondrostoma toxostoma,
which have geographic distributions characterized by a mosaic of hybrid zones. We described
microbiota diversity and composition in the three main teleost mucosal tissues, the skin, gills
and gut, in the parental parapatric populations. We found that tissue type was the principal
determinant of bacterial community composition. In particular, there was strong microbiota
differentiation between external and internal tissues, with secondary discrimination between
the two species. These findings suggest that specific environmental and genetic filters
associated with each species have shaped the bacterial communities, potentially reflecting
deterministic assemblages of bacteria. We defined the core microbiota common to both
Chondrostoma species for each tissue, highlighting the occurrence of microbe-host genome
interactions at this critical level for studies of the functional consequences of hybridization.
Further investigations will explore to what extend these specific tissue-associated microbiota
signatures could be profoundly altered in hybrids, with functional consequences for post-

mating reproductive isolation in relation to environmental constraints.



Introduction

Microbes are one of the major cell components of vertebrates, in terms of both their
numbers (thousands of billions of cells), and their genomic diversity (thousands of highly
diverse species) [1]. The microbiota is not simply a neutral companion (biological community).
Through its myriad of dynamic interactions with the host, the microbiota is an active partner
in many physiological functions, contributing to the overall performance of the organism in
immune defense and nutrient assimilation [2—4]. The microbiota includes representatives
from a large panel of phyla, including bacteria, archaea, fungi, and protozoans, but the
bacterial community makes up the bulk of this ecosystem [1, 5]. Bacteria are present on all
interfaces between host tissues and the environment. Studies, essentially in humans, have
shown that different body parts such as the skin, oral cavity, lungs and gastrointestinal tract
(GIT), are characterized by their own microbiota [6]. Indeed, the different host tissues have
specific physical and biological properties, such that each constitutes a particular microhabitat
favorable for specific bacterial assemblages [7].

Environmental factors shape microbiota composition, but similarities between
genetically related individuals (e.g. between family members or within populations) have
suggested that there may be a heritable component of microbiota composition. Numerous
studies analyzing twins and genome-wide associations (GWA) have provided evidence for a
genetic contribution to microbiota composition [8—11]. These host genome-microbiota
associations and their global contribution to host fitness, suggested that microbes might be
involved in processes of speciation, based on Bateson-Dobzhansky-Muller (BDM)
incompatibilities [12]. According to this hypothesis, there should be a detectable host-specific

microbiota signature [13, 14]. This signature is conceptualized in the term “core microbiota”,



which defines a consistent set of microbial taxa common to the individuals of a host species
[15].

Microbiota composition is a complex and heritable polygenic trait [16]. Introgressive
hybridization induces the disruption of a co-adapted genetic complex, and would therefore be
expected to alter interactions between the host genome and microbiota, with potentially
deleterious effects, leading to the maintenance of reproductive isolation [9, 17]. However,
genomic admixture could also lead to a transgressive phenotype with adaptive novelties in
hybrids [18]. Indeed, microbiota rearrangement in hybrids may lead to the emergence of
favorable physiological functions, facilitating the exploitation of new ecological niches. Thus,
changes in the microbiota of hybrids may lead to the establishment of a post-mating
reproductive barrier, but they may also act as a potent factor in the ecological speciation or
range expansion of one of the two parental species [9, 12, 19]. The exploration of the
microbiota in wild interbreeding species is therefore important for an understanding of the
fundamental biological and ecological processes of speciation and range expansion, and the
ecology of invasion.

In this study, we explored this exciting research perspective in two interbreeding fish
species Parachondrostoma toxostoma (P. toxostoma) and Chondrostoma nasus (C. nasus).
These two cyprinids have been defined as two distinct and different species [20], and some
authors have even separated them into two genera [21]. However, the range expansion of C.
nasus in the area in which P. toxostoma is endemic, over the last century, has resulted in
contact zones in which the two species engage in multiple bidirectional hybridization events,
which have resulted in a mosaic of hybrid zones [22]. Studies of hybridization and associated
phenotypes in wildlife are challenging. In particular, determinations of the relative

contributions of the parental genomes to hybrid phenotypes require calibration of the



phenotypic characterization of specimens in the allopatric parental populations. However, the
sampling strategies required cover different environmental conditions, making it more
difficult to separate out the species and environmental effects. Conversely, the sampling of
sympatric populations minimizes the environmental effect, but promiscuity and hybridization
phenomena may make it difficult to characterize the parental phenotypes.

We therefore decided, as a first step in this research perspective, to characterize the
microbiota associated with P. toxostoma and C. nasus in the geographically closest parapatric
populations inhabiting the same upstream river separated by dams before the invasion of C.
nasus. For the overall microbiota characterization in these interbreeding species, we
investigated the microbiota associated with the three main mucosal tissues in teleost fish:
skin, gills and gut tissues. These tissues differ in terms of their epithelial structure and immune
barriers, physiological functions and the pool of bacteria to which they are exposed. The skin
and gills can be defined as external mucosal tissues, due to their exposure to bacteria in the
surrounding water. By contrast, the gut is an internal mucosal tissues exposed to the bacteria
of the digestive content.

We aimed 1) to characterize the patterns of microbiota diversity and structure
associated with mucosal tissues within and between the interbreeding species, 2) to decipher
the relative contribution of species, tissue and sex to the defined microbiota composition, and
3) to determine whether the core microbiota of each species in this stream corresponded to
a host-specific signature, by comparison with the core microbiota common to both

Chondrostoma species.

Materials & Methods

1. Field sampling



We focused on two freshwater fish species from the Chonsdrostoma species complex:
Parachondrostoma toxostoma (Pt) and Chondrostoma nasus (Cn). We conducted field
sampling in August 2015, on two allopatric populations inhabiting the Suran river (France).
These two sampling sites, each characterized by the presence of one of the two species, were
separated by 30 km of the watercourse and by a succession of dams, strongly limiting the
contact between them and the potential for hybridization (figure 1). We sampled eight Pt
specimens from the upstream station (Chavasnes-sur-Suran; latitude: 46.264383, longitude:
5.429392) and eight Cn specimens from the downstream station (Pont d’Ain, latitude:
46.048769, longitude: 5.324263). The collection design was balanced, with four males and
four females collected for each species. Using sterile materials, we dissected the caudal fin,
the gills (first arch, left side of the fish) and the gut, which we separated into two parts: the
midgut and the hindgut (figure 2). A piece of each tissue was stored in 95% ethanol at -80°C

for subsequent molecular analyses.

2. Molecular techniques

We extracted bacterial DNA from the various tissues, with the Qiagen Food Mericon
kit (Qiagen, Venlo, Netherlands), according to a slightly modified version of the
manufacturer’s protocol. Briefly, we used sterile materials to isolate a piece of tissue weighing
about 5 mg, which was lysed by incubation in 700 uL of Food Lysis Buffer with 3 ul proteinase
K for 3 hours at 56°C. The lysis reaction was stopped by placing the sample on ice. We added
500 ul chloroform, centrifuged the sample at 14,000 x g for 15 min and collected the
supernatant. We added 1.2 mL of PB buffer and transferred the sample onto silicate column.
The sample was cleaned with 500 uL AW?2 buffer, and the bacterial DNA was eluted in 100 uL
EB buffer. The extraction procedure was duplicated for eight samples, and we included three

extraction-negative controls to evaluate potential contaminant at this step of the procedure.



We amplified a 251 bp fragment of the V4 region of the bacterial 16S rRNA gene in a
slightly modified version of the dual-index method of Kozich et al. [23], as described by Galan
et al. [24]. Briefly, the forward and reverse V4 primers included 8-bp index and Illumina
adapters. The various combinations of forward and reverse indexed primers made it possible
to identify each PCR product for pooling and loading into a single MiSeq flow cell. We
duplicated the 16S gene amplification for each sample using different tagged primer
combinations, and we performed negative PCR controls, including both the DNA extraction-
negative controls and two amplification-negative controls. We also amplified a commercially
available mock community, the ZymoBIOMICS Microbial community standard (Zymo
Research, Irvine, CA, USA) consisting of a mixture of known quantities of DNA from eight
bacterial species, in quadruplicate, to evaluate the accuracy of the overall procedure. The
conditions of DNA amplification, and the purification and pooling of PCR products were as
described by Galan et al. [24]. The final library was quantified with the Kapa quantification kit
(Kapa Biosystems) and loaded into a MiSeq (lllumina) flow cell (expected cluster density,
120,000 to 140,000/mm?) with reagent kit v3 (lllumina, 2x300 cycles). High-throughput
sequencing of the 156 PCR products (72 duplicated samples, 4 mock community and 8
negative controls) was performed within a larger project corresponding to a total of 176

indexed PCR products.

3. Bioinformatics pipeline

The assembly, denoising, demultiplexing and clustering of the MiSeq dataset obtained
were performed with Mothur v.1.34 [25], according to the standard Mothur MiSeq system
operating procedure for Miseq sequences (https://www.mothur.org/wiki/MiSeq_SOP).
Briefly, we merged R1 and R2 reads into contigs, with a threshold phred score quality >25, and

we reattributed each sequence to the corresponding sample based on the exact specific index



combination. We considered only sequences with no ambiguous nucleotide and a sequence
length of 249 to 275 bp. We then aligned the sequence variants to Silva SSU Reference
alignment v123 [25]. We removed the sequences misaligned with the Silva alignment (position
start=1968 end=11546) and the sequences matching with chloroplast, mitochondria, archaea
and unclassified sequences in this database. We merged clusters of sequences differing by up
to two nucleotides, considered as artifactual errors, and we removed the remaining singletons
(unique sequences at the level of a sequencing run probably corresponding to sequencing
errors). Finally, we detected and eliminated chimeric sequences with the Uchime algorithm
[26], as implemented in Mothur. We applied the entire bioinformatics pipeline to the larger
but homogeneous dataset for 176 PCR products pooled for the same NGS run. We obtained a
total of 11615,713 denoised sequences. We clustered the 89,714 variants into 11,332
operating taxonomic units (OTU), on the basis of average hierarchical clustering with 97%
similarity as the lower threshold, to generate a BIOM-formatted OTU table. For further
analyses based on the phylogenetic diversity index, we generated a phylogenetic tree for the
representative sequences from each OTU (i.e. the most abundant sequence), using a FastTree

algorithm [27] implemented in QIIME v. 1.9.1 [28].

4, Validation of molecular and bioinformatics procedures

We obtained 158,500 to 163,895 denoised sequences for each quadruplicate of the
mock community. Based on the known 16S rRNA sequences of the eight bacteria comprising
this mock community, we estimated an average 0.05% global discrepancy confounding both
PCR and Illlumina errors. Moreover, the clustering of the denoised sequences into OTUs
revealed that about 97% of the sequences for each mock community matched those for the

eight expected OTUs.



We performed three duplicated negative controls for the DNA extraction step and two
negative controls for the 16S rRNA amplification step. We obtained 489 to 4,738 denoised
sequences for the three duplicated negative extraction controls, and 22 and 724 denoised
sequences for the two negative amplification controls. These counts are low relative to the
total number of sequences for each sample and were considered negligible given the average
sequencing depth of 65,415 sequences for the 148 positive samples (72 duplicated tissue
samples and quadruplicated mock community samples). Furthermore, the sequences
obtained did not correspond to any systematic contamination. Finally, the detection of 14 to
94 sequences assigned to 16 unused tagged primer combinations indicated a negligible
mistagging rate of 0.06% in our final dataset.

We observed a positive correlation between the sequencing depths of duplicates
(Pearson’s r=0.99, p<0.001), reflecting strong repeatability of the amplification efficiency and
no biases associated with nucleic acid tagging sequences. We normalized the data for
sequencing depth, by performing a rarefaction procedure involving random re-sampling,
without replacement, of sequences for each sample to the minimal sequencing depth
observed in the whole dataset, in this case 13,000 sequences. We removed from the dataset
for all subsequent analyses four samples with an insufficient sequencing depth (<7,083
sequences). The procedure was repeated 1,000 times to avoid potential sampling error due
to the randomization process. For the 1,000 OTU tables produced, we estimated Good’s
coverage index and alpha diversity indices: the Shannon (binary logarithm) and phylogenetic
diversity (Lozupone & Knight 2008) indices. Then, for each index, we considered the mean
value estimated for the 1,000 OTU tables. The mean Good’s coverage was estimated at 0.993,
indicating that our sequencing depth covered the high degree of diversity of the microbiota

studied. We observed strong correlations between duplicates for the Shannon (Pearson’s r=



0.99, p<0.001) and phylogenetic diversity (Pearson’s r= 0.99, p<0.001) indices, demonstrating
the repeatability of PCR amplification and validating the bioinformatics. We therefore
combined the sequences from duplicates for further analyses. From the resulting combined
OTU table, generated from the merged duplicated samples, we performed a rarefaction
procedure on 34,000 sequences, i.e. the minimal sequencing depth of merged samples. We
checked for a significant correlation between the eight extraction duplicates for the Shannon
(Pearson’s r=0.99, p<0.001 and PD (Pearson’s r=0.99, p<0.001) indices. These results indicated
no bias specific to a particular tissue type, and we stored one of the duplicated extraction
samples, chosen at random. Finally, we generated rarefaction curves for the two alpha indices
for 10 to 100,000 sequences, with 20 steps and 100 iterations. The patterns for both indices
showed that the values rapidly reached a horizontal asymptote at a sequencing depth of
20,000 sequences (supplementary figure S1), confirming the consistency of the index values,
estimated at 34,000 sequences. We considered the entire procedure, from DNA extraction to
the estimation of the different diversity indices, to be validated, and we performed further

analyses.

5. Statistical methods
a. Microbial diversity within mucosal tissues

We characterized the alpha diversity of the microbiota in each tissue, by estimating
the classical Shannon index (binary logarithm), and phylogenetic diversity (PD), a qualitative
index based on the total branch length of the phylogenetic tree of OTUs [29]. We hypothesized
that species, tissues, and sex influence the composition and diversity of microbiota. We tested
our hypotheses with generalized linear mixed models (GLMMs), in which the alpha index was

the response variable, and species, tissue, sex and all two-way interactions were treated as



fixed explanatory factors. The models included the specimen as a random factor, as repeated
observations (different tissues) were made for each specimen. We also included a variance
structure function, in accordance with assumptions concerning the heteroscedasticity of
residuals by tissue and by species. The significance of the effects of fixed explanatory factors
was determined in likelihood ratio tests. GLMMs were generated with the nime [30] package

of R [31].

b. Divergence of microbiota composition and structure

We estimated the divergence of microbiota composition and structure with four
dissimilarity indices providing slightly different information: Bray-Curtis, binary Jaccard,
unweighted Unifrac and weighted Unifrac. The Bray-Curtis and binary Jaccard indices are
based on the abundance and presence/absence of taxonomic units, respectively, regardless
of phylogenetic relationships. The Unifrac distance takes into account phylogenetic
relationships between OTUs, by considering the fraction of the total phylogenetic branch
length that is unique or common to the communities considered, with or without weighting
for the abundance of the taxonomic units [32]. We estimated these four dissimilarity indices
for the 1,000 rarefied OTU tables and used the mean values obtained in subsequent analyses.
For each index, we performed a principal coordinate analysis (PCoA), in which the microbiota
communities were ordered along axes maximizing the variance between statistical units [33].
This procedure allows provides geometric information about the contribution of each
biological factor shaping the observed divergence of the microbiota. We hypothesized that
stochastic and deterministic factors would have different effects on microbiota composition.
Deterministic factors should result in lower dissimilarities of microbiota composition and,

thus, lower levels of dispersion away from the centroid of the factor considered, in this case,



the tissue. For this purpose, we tested the homogeneity of dispersions of microbiota relative
to the centroids between tissues for each species, in multivariate analyses of the homogeneity
of group dispersion (the betadisper function of the vegan package [34] of R [31]) for the four
indices, with free and pairwise permutations in post-hoc tests (10,000 iterations).

We performed a main PERMANOVA (adonis function of the vegan package [34]),
which is similar to AMOVA. It partitions the sum of squared deviations from the centroids [33]
between explanatory factors. We tested the effects of species, sex, and tissue, and two-way
interactions, on the variation of total dissimilarity between microbiota. The significance of the
effect of each factor was assessed in an F test based on the sequential sum of squares
estimated from a 10,000-permutation procedure. We performed pairwise PERMANOVA as a
post-hoc nonparametric test, with 10,000 permutations and the determination of a p-value,
the significance of which was determined according to the false discover rate (FDR) correction
procedure of Benjamini & Hochberg [35]. Finally, we estimated for each tissue, the

proportions of OTUs common to the two species and unique to each species.

C. Phyla associated with mucosal tissues

We characterized the microbiota associated with mucosal tissues at the level of the
bacterial phylum, a conservative approach to define the divergence of microbiota composition
between samples and grouping taxa with similar biological characteristics and potential
physiological functions. We averaged sequence counts for the 1,000 rarefied OTU tables
(34,000 sequences), and we then added mean OTU sequence counts at the phylum level.

We characterized the whole-tissue core microbiota as the bacterial phyla common to

all tissue samples, firstly for each species considered separately, and then for the



Chondrostoma species complex. We then determined the core microbiota of each tissue for
each species separately and for the Chondrostoma species complex.

We compared the abundance of bacterial phyla between mucosal tissues for each
species and between species for each mucosal tissue. We performed nonparametric t tests
(10,000 permutations) in Qiime 1.9.1, with a threshold p-value for significance after FDR

correction of 0.05 [35].

Results
1. Microbial diversity within mucosal tissues

We observed an effect of mucosal tissue on the Shannon and Phylogenetic diversity
indices, but this effect differed between the two species studied (Shannon: tissues x species
interaction, x>=16.52, p<0.001; PD: tissues x species interaction, x*=23.04, p<0.001). In C.
nasus, Shannon diversity differed principally between external (caudal fin and gills) and
internal (midgut and hindgut) tissues, which had a less diverse microbiota (figure 3A). In P.
toxostoma, Shannon indices were similarly high for the caudal fin, midgut and hindgut, with
only the gills presenting a slightly less diverse microbiota (figure 3A). The pattern of PD index
variation discriminated between the external and internal mucosal tissues. Opposite patterns
of PD variation between these tissues were observed in the two species. In P. toxostoma, the
caudal fin and gills had a lower PD of bacteria than the internal tissues, whereas, in C. nasus,
the PD was lower in the gut than in external mucosal tissues (figure 3A). However, the caudal
fin-associated microbiota in P. toxostoma was characterized by a high Shannon index but a
low PD (figure 3A), suggesting that these communities harbored diverse bacterial taxa that

were closely phylogenetically related.



Sex also affected the Shannon and PD indices, and this effect differed between tissues
(Shannon: tissues x sex interaction, x>=11.30, p=0.010, PD: tissues x sex interaction, x>=8.38,
p=0.039). For both indices, we found that the microbiota diversity associated with the caudal
fin and gills was characterized by a higher degree of sex dimorphism than observed for the gut
microbiota (Figure 3B). The external tissue-associated microbiota was more diverse in females
than in males, whereas the microbiota associated with internal mucosal tissues was similarly
diverse in the two sexes (Figure 3B).

Finally, the species x sex interaction was not significant for either of the indices
considered (Shannon: species x sex interaction, x2=0.08, p=0.768, PD: species x sex interaction,

¥2=0.03, p=0.859).

2. Divergence of microbiota composition and structure

The two first axes of the principal coordinate analyses highlighted, consistently for the
four dissimilarity metrics, the divergence of microbiota composition relative to both mucosal
tissue and species (unweighted Unifrac, figure 4; Bray-Curtis, Jaccard and weighted Unifrac
distances, figure S2). Within particular, as previously shown for alpha diversity, we observed
discrimination between external (caudal fin and gills) and internal (midgut and hindgut)
mucosal tissues (figure 4A). We detected no differentiation between the microbiota
associated with the two parts of the gut, regardless of the species considered, consistent with
microbiota composition remaining constant throughout the Ilength of the gut
(midgut/hindgut). PCoA also showed strong homogeneity of gut microbiota composition in P.
toxostoma (figure 4A and 4B). This observation was confirmed by analyses of within-group
dispersion, which indicated lower levels of dispersion for the gut microbiota than for the
caudal fin and gill microbiota in P. toxostoma (pairwise permutations tests, p<0.001,

supplementary tables S1 and S2). By contrast, dispersion from the centroid did not differ



significantly between tissues for the microbiota in C. nasus (pairwise permutations tests,
p>0.05, supplementary table S1).

These graphical observations obtained by PCoA were confirmed by the principal
PERMANOVA, which indicated, for the four dissimilarity metrics, a significant effect of tissue
X species interaction (p<0.001, see details for each metric in table 1). Mucosal tissue was the
most important explanatory factor for microbiota dissimilarity, with an estimated R? of 0.11
to 0.22. Pairwise PERMANOVA revealed a differentiation of microbiota composition into three
groups (caudal fin, gills and midgut/hindgut) within each species (p<0.05, see details for each
metric in supplementary table S3). Indeed, the microbiota associated with the midgut and
hindgut did not differ in composition, whatever the species considered (PERMANOVA,
p>0.05). Finally, pairwise PERMANOVA performed independently for each tissue showed a
dissimilarity of microbiota composition between the two species studied (PERMANOVA,
p<0.05, see details for each metric in supplementary table S4).

The percentage of OTUs common to the two species was similar for each tissue, at
23% to 27% (supplementary figure S3). C. nasus was characterized by a large number of
specific OTUs in the caudal fin and gills, accounting for 59% and 46%, respectively, of the total
number of OTUs observed in these tissues. By contrast, P. toxostoma was characterized by a
large number of specific OTUs in the midgut and hindgut, accounting for 56% and 58%,

respectively, of the total number of OTUs observed in these tissues.

3. Phyla associated with mucosal tissues

We identified 11,332 OTUs from 41 phyla in our dataset. The all-tissues core
microbiota contained OTUs from six phyla in C. nasus and eight phyla in C. toxostoma. The
Chondrostoma species complex had an all-tissues core microbiota of five phyla: Acidobacteria,

Bacteroidetes, Firmicutes, Proteobacteria and Verrucomicrobia. However, a breakdown by



tissue revealed a greater complexity of tissue-specific core microbiotas. The core microbiotas
for each tissue had the following compositions: 14, 11, 6 and 9 phyla for the caudal fin, gills,
midgut and hindgut, respectively, in C. nasus; 11, 9, 14 and 17 phyla for the caudal fin, gills,
midgut and hindgut, respectively, in P. toxostoma and 11, 8, 5 and 9 phyla in caudal fin, gills,
midgut and hindgut, respectively, in Chondrostoma species complex (figure 5).

We detected several phyla that differed in abundance between tissues in the two
species (figure 6, see details in table S5 and figure S4). The key exception was the microbiotas
of the midgut and hindgut, which did not differ significantly in phylum composition, regardless
of the species considered. We also found that the abundance of unclassified bacteria was
higher in the gills than in the caudal fin in P. toxostoma.

In P. toxostoma, the abundance of Actinobacteria and Bacteroidetes was higher in
the caudal fin than in the other three mucosal tissues. The midgut and hindgut were
characterized principally by a higher abundance of Cyanobacteria and Proteobacteria than the
caudal fin. The hindgut also harbored a higher abundance of Planctomycetes than the external
mucosal tissues.

In C. nasus, the abundance of Actinobacteria and Deinococcus-thermus was higher in
the caudal fin than in the other three mucosal tissues. Firmicutes bacteria were also more
abundant in the caudal fin and gills than in the gut microbiota, which was characterized by a
higher abundance of the CKC4 and Fusobacteria phyla than the external mucosal tissues.

All mucosal tissues except the caudal fin displayed differences in the abundance of
several phyla between the two interbreeding species (figure 6, see details in table S6). The
abundance of Firmicutes, CKC4 and Spirochaetae was higher in the gills of C. nasus than in the
gills of P. toxostoma, although these phyla accounted for only a small proportion of the

microbiota (mean proportion below 1%, table S3). The midgut of C. nasus harbored a high



abundance of Bacteroidetes and CKC4, whereas the abundance of Planctomycetes was high
in the midgut of P. toxostoma. A comparison of the hindgut microbiota of the two species
highlighted a high abundance of CKC4 and Fusobacteria in C. nasus, and of Cyanobacteria in

P. toxostoma.

Discussion

Understanding the role of the microbiota as a reproductive barrier or a source of
adaptive novelty in the fundamental biological phenomenon of speciation is an exciting new
challenge requiring explorations of microbiota variation in wild interbreeding species. We
report here, in two wild populations of P. toxostoma and C. nasus, differences in the
microbiota between mucosal tissues. In particular, we observed a strong differentiation of the
microbiota between external and internal tissues, with opposite patterns of bacterial diversity
in these tissues between the two interbreeding species. These findings suggest that specific
environmental and genetic filters have shaped the microbiota and may reflect deterministic
assemblages of bacteria. We defined a shared whole-body core microbiota common to the
two Chondrostoma spp., but our results highlight crucial differences between tissues in which
local microbe — host genome interactions occur. If genome plays an important role in the
determination of microbiota, the specificity of the microbiota defined for each tissue and
species could be profoundly altered by genetic admixture in hybrids in the sympatric area.

We found that the nature of the tissue was a critical primary determinant of microbiota
diversity and composition. Intraindividual microbiota variation between tissues has been little
explored in wild animal species [36], and has been the subject of only a few studies in humans
[6, 7, 37]. Our results highlight a “whole-body” view of the intraindividual microbiota in wild

fish species. This intraindividual variation, which is consistent within a species, is driven by



environmental and genetic factors [16]. The different sources of bacteria in contact with
mucosal tissues probably account for the major differences in the microbiota between
external tissues (such as the caudal fin and gills, in contact with the surrounding water), and
internal tissues (such as the midgut and hindgut, in contact with the bacteria present in the
diet). River water is a favorable environment for bacterial growth, and the external mucosal
barriers (the skin and the gills), are in constant contact with this source of bacteria. River water
is also a source of bacteria for the gut microbiota [38, 39], but the structure of the GIT
microbiota depends principally on the dietary regime of the fish [40-42]. A meta-analysis
showed that the composition of the gut microbiota in different fish species was determined
by their trophic level: herbivorous, omnivorous or carnivorous [43].

In addition to local abiotic factors, such as temperature, pH and oxygenation, which
can have selective effects on bacteria by providing favorable growth conditions, the
physiology of the local host tissues, and their immune responses in particular, may select for
a microbiota with a specific composition [44]. Little is known about mucosal immunity in
teleost fish, but the three main mucosal lymphoid tissues (skin, gills and gut) differ in their
cellular organization and are characterized by different immune components [45]. We also
observed an effect of sex on the diversity of the external tissue microbiota. Sex dimorphism
in microbiota composition has been reported in many studies, but particularly for the gut
microbiota [46—48]. Sex hormones can modulate host physiology strongly, particularly in
terms of the development of effective immune responses to infection [49]. The higher
diversity of bacteria in the skin and gills of females than in those of males may therefore reflect
differences in hormonal status, leading to a downregulation of defense barriers in females.
Further analyses of the relationships between tissue transcriptomes and the microbiota

present could provide support for these close, local host-microbe interactions.



The two interbreeding species studied each displayed their own specific variation of
microbiota diversity and composition between tissues. Our results highlight the absence of a
similar general pattern in fish species for microbiota diversity in the external and internal
tissues, indicating that interspecific microbiota comparisons are possible only for given
tissues. The skin mucosa in teleost fish constitutes an important active dynamicimmunological
barrier to infection and the composition of the skin-associated microbiota may result from
close interactions with host immune genes [50]. Simkova et al. [51] reported differences in
Mhc gene polymorphism between P. toxostoma and C. nasus, which had a smaller number of
specific alleles. Conversely, C. nasus had a larger number of Mhc variants per specimen. This
immunogenetic polymorphism between the two species may reflect interspecific variation of
the phylogenetic diversity of the skin microbiota observed. The gut microbiota is also highly
dependent on dietary regime. Chondrostoma nasus is a perilithon grazer with a diet composed
of diatoms and chlorophytes, whereas P. toxostoma has a slightly more diverse regime based
on algae and invertebrate prey [52], although there is a dietary overlap between the two
species, depending on environmental condition (i.e. particularly in similar environmental
conditions, [53]). In heterogeneous environmental conditions, the difference in dietary regime
between the two interbreeding species may account for the poorly diverse gut microbiota in
C. nasus and the high diversity observed in P. toxostoma. However, the similarity of the
environments from which these two species were sampled (parapatric populations) implies
that the gut microbiota diversity observed probably results at least partly from the diversity
of food ingested, but also from the bacterial functions required for nutrient assimilation and
host compatibility. In particular, we detected a very strong homogeneity of gut microbiota
composition in P. toxostoma specimens, suggesting that there may be strong deterministic

factors, such as local host gene expression in gut tissue [54, 55].



The core microbiota common to the two interbreeding species studied was restricted
to five phyla: Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Verrucomicrobia.
These bacterial phyla are consistent with those generally described in fish microbiota studies
(see review [56]). The core microbiota is the set of bacterial taxa systematically associated (i.e.
stable in space and time) with the host organism studied. In our study, the core microbiota
were defined in only one locality and therefore was probably larger than a specific signature
common in all environmental contexts. The existence of a core microbiota at a high taxonomic
level should reflect associated functions common to the members of the phylum [17]. The
stability of the core microbiota is also linked to the idea of consistent microbial communities
associated with organisms and forming a biological unit: the holobiont [12]. However, even if
defined to a specific environmental context in our study, the variation of the core microbiota
between tissues highlighted the local tissue-specific interactions between bacteria and a host
genome, a situation more complex than considering host-microbe interactions as a single unit
at the whole-body scale. Indeed, we defined core microbiotas of six to 17 phyla, depending
on the tissue and species considered. For example, the core microbiota in P. toxostoma
consisted of 11 phyla in the caudal fin and 17 phyla in the hindgut, whereas the core
microbiota of the corresponding tissues of C. nasus contained 15 and nine phyla, respectively.
This pattern highlights the dependence of the core microbiota in relation to host tissues and
lead to the hypothesis of different impact of introgressive hybridization on the microbiota
associated to the tissues considered.

The relative abundance of phyla varied between tissues and species. Phylum
abundances in the gut microbiota differed between the two species, potentially due to
differences in diet, as described above. In particular, the high abundance of Cyanobacteria and

Planctomycetes in P. toxostoma was similar to that observed in the gut microbiota of the grass



carp (Ctenopharyngodon idella), consistent with a basically herbivorous dietary regime [57].
In C. nasus, the abundance of Bacteroidetes, known to be associated with fermentative
metabolism and the degradation of cellulose from plant materials [58], and Fusobacteria,
known to produce large amounts of vitamin B12, may reflect requirements for metabolic
functions [59]. These abundant phyla, their relevance in specific dietary conditions and for
functional activities, suggest that changes to the gut microbiota in hybrids could have a
profound impact on nutrient absorption and other critical physiological functions.

In conclusion, our study reveals intraindividual variation in the microbiota associated
with particular mucosal tissues. The species signature of microbiota may reflect the role of
deterministic factors, such as host genome in particular, in controlling the constitution of
bacterial assemblages, even if environmental factors would also influence the microbiota
composition observed. The close interactions between the host genome/transcriptome and
tissue-associated microbiota could be profoundly altered by genetic admixture in hybrids,
with an impact on performance relative to environmental constraints [9, 60]. Further
investigations will be required to explore microbiota rearrangement in hybrids and its
consequences for post-mating reproductive isolation, shaping the geographic mosaic of hybrid

zones.
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Figure 1. Map of the Ain region (France) showing the two sampling sites in the Suran river.

Figure 2. Diagram representing the locations of tissues sampled on fish species.

Figure 3. Alpha diversity indices of microbiota in tissues in relation to A) species and B) sex.
Shannon (filled bars) and Phylogenetic Diversity (striped bars) indices (mean + SE) of
microbiota associated with the four mucosal tissues in C. nasus (grey) and P. toxostoma

(black).

Figure 4. Principal Coordinates Analysis exploring the effect tissues and species on the
unweighted Unifrac distance of microbiota composition. We present the two first axes of
independent PCoA analyses performed. Each point corresponds to one microbiota sample
colored following A) the 4 mucosal tissues: caudal fin (blue triangle), gills (orange circle),
midgut (green triangle) and hindgut (purple triangle); B) the two species: C. nasus (orange

triangle) and P. toxostoma (green square).

Figure 5. Core microbiota of Chondrostoma species in each tissue at the phylum taxonomic
level. Core microbiota was identified associated to C. nasus (grey), P. toxostoma (black) or
both Chondrostoma species (double traits grey and black). Common taxa to all samples are

bolded.

Figure 6. Cumulative bar charts of main bacterial phyla present in mucosal tissues of C. nasus
and P. toxostoma. Percentages show the mean relative abundance of each phylum by tissues
and species based on the averaged phylum abundance table resulting from the 1,000 rarefied

OTU tables.



Supplementary Figure Legends

Supplementary figure S1. Alpha diversity rarefactions curves. Procedure of rarefactions from
10 to 100,000 sequences with 20 steps and 100 iterations for A) Shannon and B) Phylogenetic

Diversity indices.

Supplementary Figure S2. Principal Coordinates Analysis exploring the effect tissues and
species on the dissimilarities of microbiota compositions. For the A) Bray-Curtis, B) Jaccard
and C) weighted Unifrac distance matrices we present the two first axes of independent PCoA
analyses performed. Each point corresponds to one microbiota sample colored following 1)
the 4 mucosal tissues: caudal fin (blue triangle), gills (orange circle), midgut (green triangle)
and hindgut (purple triangle); 2) the two species: C. nasus (orange triangle) and P. toxostoma

(green square).

Supplementary figure $3. Common and specific OTUs of P. toxostoma and C. nasus in the
different mucosal tissues. Venn diagram showed numbers and percentages of OTUs specific

to P. toxostoma, C. nasus and shared by the two species in caudal fin, gills, midgut and hindgut.

Supplementary figure S4. Cumulative bar charts of main bacterial phyla present in mucosal
tissues of C. nasus and P. toxostoma. Percentages show the mean relative abundance of each
phylum for each sample from the 1,000 rarefied OTU tables by A) caudal fin, B) gills, C) midgut

and D) hindgut
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Table 1. Main PERMANOVA exploring the effect of species, tissues and sex on dissimilarity distances between microbiota compositions.
The models included species, tissues, sex and interaction of order 2 and were performed independently on Bray-Curtis, Jaccard,
unweighted Unifrac and weighted Unifrac distance matrices. The terms were added sequentially and tested on pseudo-F value and
random distribution estimated after 10,000 permutations.

Bray-Curtis Jaccard Unweighted Unifrac Weighted Unifrac

terms added sequentially df pseudo F R? p pseudo F R? p pseudo F R? p pseudo F R? p

species 1 11.434 0.124 <0.001 3.724 0.052 <0.001 4.024 0.054 <0.001 10.853 0.110 <0.001
sex 1 1.193 0.013 0.244 1.145 0.016 0.171 1.212 0.016 0.159 1.192 0.012 0.279
tissues 3 5.573 0.181 <0.001 2.785 0.117 <0.001 3.482 0.139 <0.001 7.332 0.222 <0.001
species : sex 1 1.021 0.011 0.386 1.013 0.014 0.36 1.087 0.014 0.274 0.761 0.008 0.656
sex : tissues 3 0.832 0.027 0.754 1.005 0.042 0.415 0.995 0.040 0.457 0.680 0.021 0.905
species : tissues 3 3.494 0.114 <0.001 1.671 0.07 <0.001 2.089 0.084 <0.001 4.422 0.134 <0.001
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Supplementary figure S3
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Supplementary figure S4
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Parachondrostoma toxostoma

Chondrostoma nasus

Df SS F P value Df SS F P value
Bray-Curtis 3 0.573 22.36 <0.001 3 0.018 0.18 0.918
Jaccard 3 0.103 17.402 <0.001 3 0.011 0.432 0.766
unweighted Unifrac 3 0.096 15.348 <0.001 3 0.002 0.066 0.987
weighted Unifrac 3 0.225 21.18 <0.001 3 0.009 0.181 0.914




Parachondrostoma toxostoma

Bray-Curtis Jaccard unweighted Unifrac weighted Unifrac
comparison mean diff p value mean diff p value mean diff p value mean diff p value
gills-caudale 0.006 0.854 <0.001 0.978 0.014 0.290 0.070 0.038
hindgut-caudale -0.258 <0.001 -0.110 0.001 -0.102 0.001 -0.127 0.001
midgut-caudale -0.288 <0.001 -0.124 0.001 -0.110 0.003 -0.135 0.001
hindgut-gills -0.265 <0.001 -0.111 0.001 -0.116 0.001 -0.196 <0.001
midgut-gills -0.294 0.001 -0.124 0.001 -0.124 0.002 -0.205 <0.001

midgut-hindgut -0.030 0.625 -0.014 0.692 -0.007 0.816 -0.009 0.782




C. toxostoma

C. nasus

Bray-Curtis Jaccard unweighted Unifrac weighted Unifrac Bray-Curtis Jaccard unweighted Unifrac weighted Unifrac
comparison pseudo-F 14 pseudo-F 14 pseudo-F 1 pseudo-F 1 pseudo-F p pseudo-F p pseudo-F p pseudo-F P
caudal-gills 3.13 0.001 1.629 0.007 2.065 0.003 7.141 <0.001 2.442 0.001 1.533 0.004 1.647 0.022 2.354 <0.001
caudal-midgut 5.965 <0.001 3.452 0.001 4.359 0.001 12.05 <0.001 7.782 <0.001 2.965 <0.001 3.682 0.001 7.84 <0.001
caudal-hindgut 5.516 0.001 3.182 0.001 4.11 0.001 10.822 0.001 7.522 <0.001 2.72 <0.001 3.664 <0.001 7.535 <0.001
|gi||s-midgut 6.041 0.003 2.527 0.005 3.124 0.005 5.982 0.002 3.817 0.001 2.189 0.001 2.747 <0.001 5.201 0.002
Igills-hinddgut 5.733 0.004 2.362 0.009 2.918 0.007 6.211 0.003 3.985 0.001 1.99 0.001 2.782 <0.001 5.077 0.002
midgut-hindgut 1.045 0.364 0.903 0.763 0.89 0.672 1.603 0.058 0.6 0.811 0.829 0.689 0.797 0.641 0.502 0.753




C. toxostoma vs. C. nasus
Bray-Curtis Jaccard unweighted Unifrac weighted Unifrac
caudal fin 4.279 <0.001 2.005 <0.001 2.51 <0.001 4971 <0.001
lgills 3.581 0.002 1.96 0.003 2.269 0.009 4.312 0.002
midgut 8.003 <0.001 2.444 <0.001 2.622 0.001 7.201 <0.001
hindgut 8.342 <0.001 2.451 0.001 2.976 0.001 9.735 <0.001




P. toxostoma

C. nasus

FDR FDR
Comparison |Phylum adjusted mean groups Phylum adjusted mean groups
p value p value
gills caudal fin gills caudal fin
Chloroflexi <0.01 0.36% 2.09% |Actinobacteria <0.01 1.03% 4.51%
Firmicutes <0.01 0.26% 2.61% Deinococcus-Thermus 0.01 0.03% 8.62%
caudal fin |Deinococcus-Thermus <0.01 0% 0.82% |Chloroflexi 0.04 0.44% 1.46%
Vs Actinobacteria <0.01 0.52% 8.01%
gills Bacteroidetes 0.04 7.87% 20.24%
unclassified 0.04 23.59% 2.32%
Acidobacteria 0.04 0.47% 1.83%
midgut caudal fin midgut caudal fin
Proteobacteria <0.01 65.96% 45.1% |Gracilibacteria <0.01 <0.01% 0.07%
Bacteroidetes <0.01 1.99% 20.24% |Deinococcus-Thermus <0.01 0% 8.62%
Cyanobacteria <0.01 3.18% 1.36% Firmicutes <0.01 0.53% 5.5%
Chloroflexi 0.01 1.02% 2.09% |Spirochaetae <0.01 0% 0.76%
Chlamydiae 0.01 0.01% 0% Armatimonadetes 0.01 0% 0.13%
caudal fin Actinobacteria 0.01 1.01% 8.01% |CKC4 0.01 17.45% 0.2%
vs Firmicutes 0.01 0.39% 2.61% |Fusobacteria 0.01 3.39% 0.2%
midgut Actinobacteria 0.02 1.22% 4.51%
Lentisphaerae 0.02 0.03% 0.29%
Bacteroidetes 0.02 7.87% 15.15%
Candidate_division_SR1 0.02 <0.01% 0.04%
Nitrospirae 0.02 0% 0.07%
Parcubacteria 0.02 <0.01% 0.09%
Gemmatimonadetes 0.03 0.01% 0.07%
hindgut caudal fin hindgut caudal
Cyanobacteria <0.01 4.84% 1.36% |CKC4 <0.01 13.85% 0.2%
Chlamydiae <0.01 0.01% 0% Deinococcus-Thermus <0.01 0.01% 8.62%
Proteobacteria <0.01 59.97% 45.1% |Gracilibacteria <0.01 0% 0.07%
Bacteroidetes <0.01 4.21% 20.24% [Spirochaetae <0.01 <0.01% 0.76%
Actinobacteria 0.01 1.29% 8.01% |unclassified <0.01 0.24% 1.77%
caudal fin |Planctomycetes 0.02 12.48% 5.32% Firmicutes <0.01 0.49% 5.5%
Vs Fusobacteria <0.01 9.33% 0.2%
hindgut Actinobacteria 0.01 1.02% 4.51%
Armatimonadetes 0.01 0% 0.13%
Parcubacteria 0.01 0% 0.09%
Lentisphaerae 0.01 0.01% 0.29%
Gemmatimonadetes 0.02 <0.01% 0.07%
Nitrospirae 0.04 <0.01% 0.07%
gills midgut gills midgut
Chlamydiae 0.05 0% 0.01% [Spirochaetae 0.01 0.42% 0%
Bacteroidetes 0.05 7.87% 1.99% |Gracilibacteria 0.02 0.12% <0.01%
Acidobacteria 0.05 0.47% 1.51% |Parcubacteria 0.02 0.17% <0.01%
. Chloroflexi 0.05 0.36% 1.02% |CKC4 0.03 0.86% 17.45%
g‘lllsls Acidobacteria 0.03 1.21% 0.23%
midgut Candidate_division_SR1 0.04 0.12% <0.01%
Firmicutes 0.04 2.46% 0.53%
Gemmatimonadetes 0.04 0.11% 0.01%
Fusobacteria 0.05 0.49% 3.39%
Nitrospirae 0.05 0.22% 0%
gills hindgut gills hindgut
Chloroflexi <0.01 0.36% 1.57% |Gracilibacteria <0.01 0.12% 0%
Chlamydiae <0.01 0% 0.01% |Spirochaetae <0.01 0.42% 0%
Planctomycetes 0.04 4.06% 12.48% |unclassified 0.01 3.91% 0.24%
gills Acidobacteria 0.04 0.47% 1.57% |CKC4 0.01 0.86% 13.85%
Vs Firmicutes 0.04 0.26% 0.81% Fusobacteria 0.01 0.49% 9.33%
hindgut Parcubacteria 0.01 0.17% 0%
Firmicutes 0.02 2.46% 0.49%
Gemmatimonadetes 0.05 0.11% 0%
Acidobacteria 0.05 1.21% 0.24%




FDR

Phylum adjusted mean mean
o value P. toxostoma C. nasus
Spirochaetae 0.01 0.02% 0.42%
Gracilibacteria 0.01 <0.01% 0.12%
Firmicutes 0.01 0.26% 2.46%
Gills Parcubacteria 0.01 <0.01% 0.17%
CKca 0.02 0.02% 0.86%
Tenericutes 0.03 <0.01% 0.03%
Candidate_division_SR1 0.05 0% 0.12%
Acidobacteria <0.01 1.51% 0.23%
Nitrospirae <0.01 0.05% 0%
Gemmatimonadetes 0.02 0.04% 0.01%
Midgut Lentisphaerae 0.02 0.11% 0.03%
Bacteroidetes 0.03 1.99% 7.87%
CKC4 0.03 0.07% 17.45%
Planctomycetes 0.03 9.81% 3.95%
Planctomycetes 0.01 12.48% 2.66%
Nitrospirae 0.01 0.06% <0.01%
Gemmatimonadetes 0.01 0.06% <0.01%
Acidobacteria 0.01 1.57% 0.24%
Hindgut Lentisphaerae 0.01 0.13% 0.01%
unclassified 0.01 1.75% 0.24%
Cyanobacteria 0.02 4.84% 1.42%
Fusobacteria 0.03 0.34% 9.33%
Elusimicrobia 0.03 0.02% 0%
CKca 0.03 0.08% 13.85%




