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Abstract

In the literature, enforcement consists in changing an argumentation system in or-
der to force it to accept a given set of arguments. In this paper, we extend this notion
by allowing incomplete information about the initial argumentation system. Gener-
alized enforcement is an operation that maps a propositional formula describing a
system and a propositional formula that describes a goal, to a new formula describing
the possible resulting systems. This is done under some constraints about the allowed
changes. We give a set of postulates restraining the class of enforcement operators
and provide a representation theorem linking them to a family of proximity relations
on argumentation systems.
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1 Introduction

During a trial, a lawyer makes her final address to the judge; the lawyer of the opposite party, say O,
is able to build the argumentation system (a graph containing arguments and attacks relation between
them) corresponding to this pleading. O is also able to compute all the arguments that are accepted
according to the pleading, i.e., the set of consensual arguments. Suppose now that O wants to force
the audience to accept another set of arguments. She has to make a change to the argumentation
system, either by adding an argument or by doing an objection about an argument (to remove it) in
order to achieve this goal. In the literature, the operation to make on an argumentation system that
allows to ensure that a given set of arguments is accepted given a set of authorized changes is called
“enforcement” Baumann and Brewka [2010].

This enforcement may be done more or less easily, since it may involve more or less changes (cost
to add/remove a given argument may be introduced). The aim of the speaker will be to find the less
expensive changes to make to the argumentation system.

The previous example is a particular case of a more general enforcement operator. Since we could
consider cases where Agent O does not know exactly the argumentation system on which she must
make a change but knows only some information about it (e.g. some arguments that are accepted or
that are present in the system). In this more general case, the idea is to ensure that the argumentation
system after change satisfies a given goal whatever the initial system is. The result of enforcement
will give a characterization of the set of argumentation systems that could be obtained (taking into
account a set of authorized changes).

The key idea developed in this paper is the parallel between belief update theory Winslett [1988];
Katsuno and Mendelzon [1991] and enforcement in argumentation. Enforcement consists in search-
ing for the argumentation systems that are closest to a given starting argumentation system, in a set
of argumentation systems in which some target arguments are accepted. This gives us the parallel
with preorders on worlds in belief update. Hence worlds correspond to argumentation systems while
formulas should represent knowledge about these argumentation systems. In classical enforcement
this knowledge is expressed in terms of a description of an initial argumentation system and a set
of arguments that one wants to see accepted. This is why we propose to introduce a propositional
language in which this kind of information may be expressed. This language enables us to generalize
enforcement with a broader expressiveness.

Our paper is situated in the growing domain of dynamics of argumentation systems Boella et al.
[2009b,a]; Cayrol et al. [2010]; Baumann and Brewka [2010]; Moguillansky et al. [2010]; Liao et al.
[2011] which covers both addition and removal of arguments or interactions.

The paper is organized as follows. We first restate abstract argumentation theory. Then we present
a framework that illustrates a particular case of change in argumentation, it concerns an agent that
wants to act on a given target system, this agent has a given goal and her possible actions are limited.
We then recall classical enforcement. In the third section we propose a generalization of classical
enforcement. Finally, we do a parallel with belief update. As classical update postulates do not allow
to deal with restrictions about the authorized changes, we had to introduce a new set of postulates that
characterizes generalized enforcement. All the proofs are given in Appendix A.
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2 Framework

2.1 Abstract argumentation

Let us consider a set Arg of symbols (denoted by lower case letters) representing a set of arguments
and a relation Rel on Arg×Arg. The pair 〈Arg, Rel〉, called universe, allows us to represent the set of
possible arguments together with their interactions. More precisely, Arg represents a maybe infinite
set of arguments usable in a given domain (e.g. if the domain is a knowledge base then Arg and Rel

are the set of all arguments and interactions that may be built from the formulas of the base). We can
also, as in the following example borrowed from Bisquert et al. [2011], assume that Arg and Rel are
explicitly provided.

Example 1. During a trial concerning a defendant (Mr. X), several arguments can be involved to
determine his guilt. The following table presents this set of arguments i.e., the set Arg. The relation
Rel is represented in the graph below.

x0 Mr. X is not guilty of premeditated murder of Mrs. X , his wife.

x1 Mr. X is guilty of premeditated murder of Mrs. X .

x2
The defendant has an alibi, his business associate has solemnly sworn that he met him at the time of
the murder.

x3
The close working business relationships between Mr. X and his associate induce suspicions about
his testimony.

x4
Mr. X loves his wife so deeply that he asked her to marry him twice. A man who loves his wife
cannot be her killer.

x5 Mr. X has a reputation for being promiscuous.

x6
The defendant had no interest to kill his wife, since he was not the beneficiary of the huge life
insurance she contracted.

x7
The defendant is a man known to be venal and his “love” for a very rich woman could be only lure
of profit.

x5 x6 x3 x2

x7 x4 x1 x0

A new definition of argumentation system derives directly from a universe 〈Arg, Rel〉. It differs
slightly from the definition of Dung [1995] by the fact that arguments and interactions are taken in
the universe. In the following, we will use indifferently “argumentation system” or “argumentation
graph”.

Definition 1. An argumentation graph G is a pair (A,R) where A ⊆ Arg is the set of vertices of G
called “arguments” and R ⊆ RA = {(x, y) ∈ Rel s.t. (x, y) ∈ A×A} (RA is the restriction of Rel
on A) is its set of edges, called “attacks”. The set of argumentation graphs that may be built on the
universe 〈Arg, Rel〉 is denoted by Γ. In the following, x ∈ G when x is an argument, is a shortcut for
x ∈ A.

In the remainder of this work, Gk = 〈Ak, Rk〉 denotes the argumentation system of Agent k from
〈Arg, Rel〉, which represents the part of the universe known by k.
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Example 2. In Example 1, we consider that all the arguments are known by Agent O. She is not sure
about the content of the jury’s argumentation system. She hesitates between two graphs:

x2

x7 x4 x1 x0

x2

x4 x1 x0

In argumentation theory, see Dung [1995], given such a graph, there are several ways to compute
a set of “accepted” arguments. This computation depends on the way to select admissible groups
of arguments, called “extensions”; several definitions can be considered for the “extensions”, they
are called “semantics”. It depends also on the attribution of a status to arguments, for instance an
argument can be “accepted skeptically” or respectively “credulously”, if it belongs to all, respectively,
to at least one extension. For sake of generality, we are not interested in a particular semantics nor on
the mechanism used to instate the status of the arguments. We only consider a function acc : Γ→ 2Arg

which associates with any argumentation graph G the set of arguments that have an accepted status in
G according to a given semantics and a given status computation1.

We will define a propositional language L in order to be able to describe an argumentation system
and its set of accepted arguments. Its semantics will be defined with respect to Γ. ∀ϕ ∈ L , we denote
by [ϕ] the set of argumentation graphs such that ϕ is true in these graphs, namely [ϕ] = {G ∈ Γ s.t.
ϕ is true in G}. As usual, we denote G |= ϕ iff G ∈ [ϕ] and ϕ |= ψ iff [ϕ] ⊆ [ψ].

For sake of simplicity in all the examples, we are going to use a restricted propositional language
LArg, only able to express conditions about the presence or the accepted status of an argument in a
graph. With this language, we can only handle examples about argument addition or removal. Hence,
changes about interactions won’t be considered, which allows us to assume that R is always equal to
RA in all our examples.

Definition 2. Let ΓArg be the set of graphs (A,RA) that may be built on Arg. Let LArg be the propo-
sitional language associated with the vocabulary {a(x), on(x)|x ∈ Arg}2, with the usual connectives
¬,∧,∨,→,↔ and constants ⊥ and >. Its semantics is defined with respect to ΓArg as follows: let
G ∈ ΓArg

• the formula ⊥ is always false in G
• the formula > is always true in G
• if x ∈ Arg then
– the formula a(x) is true in G iff x ∈ acc(G),
– the formula on(x) is true in G iff x ∈ G
• the non atomic formulas are interpreted as usual, ¬ϕ is true in G if ϕ is not true in G, ϕ1 ∨ ϕ2 is

true in G if ϕ1 or ϕ2 is true in G, etc.

Note that every accepted argument in a graph should belong to the graph, hence in LArg, ∀G ∈
ΓArg,∀x ∈ Arg, G |= a(x)→ on(x).

Definition 3. The characteristic function fArg associated with LArg, fArg : ΓArg → LArg, is defined
by:
∀G ∈ ΓArg, fArg(G) =

∧
x∈G on(x) ∧

∧
x∈Arg\G ¬on(x).

Note that, in Definition 2, the attack relation being fixed, if the set of arguments belonging to G is
known then G is perfectly known. More formally, fArg(G) characterizes G in a unique way:

1This function could be parameterized by the precise semantics used.
2“a” stands for “accepted in G” while “on” stands for “belongs to G” (by opposition to “off”)
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Property 1. ∀G ∈ ΓArg, [fArg(G)] = {G}

Example 3. The jury’s system is not completely known by Agent O. It is represented in LArg by
the formula ϕJury = on(x0) ∧ on(x1) ∧ on(x2) ∧ on(x4) ∧ ¬on(x3) ∧ ¬on(x5) ∧ ¬on(x6) ∧
(on(x7)∨¬on(x7)) which covers two graphs; the disjunction between on(x7) and ¬on(x7) expresses
the fact that Agent O hesitates. Moreover, x0, x2 and (x4 or x7) are the only members of the “grounded
extension” Dung [1995]. Hence, ϕJury |= a(x0) ∧ a(x2) ∧ (a(x4) ∨ a(x7)).

Note that the idea to write propositional formulas for expressing acceptability of arguments was
first proposed in Coste-Marquis et al. [2006]. This was done with a completely different aim, namely
to generalize Dung’s argumentation framework by taking into account additional constraints (ex-
pressed in logic) on the admissible sets of arguments.

2.2 Change in argumentation

In this section we propose a definition of change in argumentation based on the work of Cayrol et
al. [2010]; Bisquert et al. [2012] and adapted to the encoding of generalized enforcement opera-
tors. Cayrol et al. [2010] have distinguished four change operations. An elementary change is either
adding/removing an argument with a set of attacks involving it, or adding/removing an attack. Ac-
cording to the restriction explained in Section 2.1, we only present in Definition 4 the operations of
addition and removal on arguments. Note that this definition gives only a particular example of change
operations when the attack relation is fixed.

The purpose of the following definitions is the introduction of a particular framework, that will
be used to illustrate enforcement. In this framework, we consider an agent that may act on a target
argumentation system. This agent has a goal and should follow some constraints about the actions she
has the right to do. For instance, an agent can only advance arguments that she knows. Hence some
restrictions are added on the possible changes that may take place on the system. These constraints
are represented by the notion of executable operation.

We first refine the notion of elementary operation within the meaning of Cayrol et al. [2010] in
four points: first a precise syntax is given; then we define an allowed operation w.r.t. a given agent’s
knowledge; we restrict this notion w.r.t. its feasibility on the target system (it is not possible to add
an already present argument or to remove an argument which was not in the graph), it leads to the
notion of executable operation; and finally, we study the impact of an operation on an argumentation
system. Note that considering only elementary operations does not result in a loss of generality since
any change can be translated into a sequence of elementary operations, called program in Definition
5.

Definition 4. Let k be an agent and Gk = 〈Ak, RAk
〉 be her argumentation system and let G =

〈A,RA〉 be any argumentation system.
• An elementary operation is a pair o = 〈op, x〉 where op ∈ {⊕,	} and x ∈ Arg.
• An elementary operation 〈op, x〉 is allowed for k iff x ∈ Ak.3

• An operation executable by k on G is an operation 〈op, x〉 allowed for k such that:
– if op = ⊕ then x 6∈ A
– if op = 	 then x ∈ A.

3Note that in the case of an argument addition, if the attack relation had not been imposed then it would have been
possible to add an argument with only a part of the known attacks and therefore to “lie by omission” or to add attacks
unknown to the agent and therefore lie in an “active” way. This will be the subject of future work.
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• An operation o = 〈op, arg〉 executable by k on G provides a new argumentation system G′ =
o(G) = 〈A′, RA′〉 such that:
– if op = ⊕ then G′ = 〈A ∪ {arg}, RA∪{arg}〉
– if op = 	 then G′ = 〈A \ {arg}, RA\{arg}〉

Example 4. From Arg and Rel given in Example 1, several elementary operations are syntactically
correct, e.g., 〈⊕, {x2}〉 and 〈	, {x4}〉.
Among the elementary operations, Agent O is only allowed to use those concerning arguments she
knows. Since O learnt all about this trial, she can use all the elementary operations.
Here are some executable operations for O on the target systems described by ϕJury. 〈⊕, {x5}〉,
〈	, {x4}〉, 〈	, {x2}〉.

Finally, we consider sequences of operations executed by an agent on an argumentation system,
called programs, which are providing the possibility for an agent to perform several elementary oper-
ations one after the other.

Definition 5. Let k be an agent and G be any argumentation system. A program p executable by k on
G is a finite ordered sequence of n operations (o1, · · · , on) such that:
• n = 1 : o1 is executable by k on G. Hence p(G) = o1(G).
• n > 1 : (o1, · · · , on−1) is a program p′ executable by k on G such that p′(G) = G′ and on is

executable by k on G′. Hence p(G) = on(G′).
• By extension, an empty sequence is also a program. Hence, for p = (), p(G) = G.

2.3 Enforcement

The main references about enforcement are Baumann and Brewka [2010]; Baumann [2012] that ad-
dress the following question : is it possible to change a given argumentation system, by applying
change operations, so that a desired set of arguments becomes accepted? Baumann [2012] has spec-
ified necessary and sufficient conditions under which enforcements are possible, in the case where
change operations are restricted to the addition of new arguments and new attacks. More precisely,
this approach introduces three types of changes called expansions, namely the normal expansion
which adds new arguments and new attacks concerning at least one of the new arguments, the weak
expansion that refines the normal expansion by the addition of new arguments not attacking any old
argument and the strong expansion that refines the normal expansion by the addition of new arguments
not being attacked by any old argument.

This is not the case in general that any desired set of arguments is enforceable using a particular
expansion. Moreover, in some cases, several enforcements are possible, some of them requiring more
effort than others. In order to capture this idea, Baumann [2012] introduces the notion of characteristic
which depends on a semantics and on a set of possible expansions. The characteristic of a set of
arguments is defined as the minimal number of modifications (defined by the differences between
the attacks on the two graphs) that are needed in order to enforce this set of arguments. This number
equals 0 when each argument of the desired set is already accepted. It equals infinity if no enforcement
is possible. Baumann [2012] provides means to compute the characteristic w.r.t. a given type of
expansion and a given semantics.

3 Towards Generalized Enforcement

Let us formalize enforcement using the definitions presented in Section 2.1. LetG ∈ Γ andX ⊆ Arg.
An enforcement of X on G is a graph G′ ∈ Γ obtained from G by applying change operations and
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such thatX ⊆ acc(G′). Different enforcements ofX onG can be compared using a preorder�G. For
instance, it seems natural to look for enforcements performing a minimal change on G. Minimality
can be based on a distance for instance. In that case, given two enforcements G′ and G′′ of X on G,
G′ �G G′′ may be defined as distance(G,G′) ≤ distance(G,G′′).

This preorder �G suggests to draw a parallel between the enforcement problem and an update
problem. Indeed, as we will see in Section 4.1, update is also related to the same kind of preorder on
worlds w.r.t. a given world. More precisely an update operator maps a knowledge base and a piece of
information to a new knowledge base, where knowledge bases are expressed in terms of propositional
formulas. The semantic counterpart of this mapping is defined by operations on models of formulas,
i.e., worlds. This gives birth to the idea that graphs are to worlds what formulas characterizing sets of
graphs are to formulas characterizing sets of worlds.

Definition 2 enables us to continue the parallel. Let S ⊆ Arg and α =
∧

x∈S a(x). [α] can be
considered as the set of graphs in which the elements of S are accepted. In other words, [α] plays the
role of the set of graphs that accept S.

This leads to formalize an enforcement problem as an operator applying to propositional formulas,
with a semantic counterpart working with argumentation graphs. So enforcing a propositional formula
α on a propositional formula ϕ means enforcing α on the graphs that satisfy ϕ.

This setting allows us to have two generalizations of enforcement: first it is now possible to use
enforcement not only to impose that a set of arguments is accepted, but also to make enforcement with
any goal that can be expressed in a propositional language describing graphs. Second, the initial graph
has not necessarily to be completely known since a description in a propositional language allows for
a richer expressivity. Hence, a set of graphs will be consider as representing the initial state of the
argumentation system.

Let us explain more precisely the notion of goal: it reflects conditions that an agent would like
to see satisfied in a particular argumentation system. We may consider two types of goals, namely
“absolute” and “relative”. An absolute goal only takes into account the resulting system after modify-
ing the target system; it formally focuses on G′. A relative goal takes into account the target system
and its resulting system; it formally focuses on (G,G′). An example of relative goal could be that
the number of accepted arguments increases after enforcement. In the following, we only consider
absolute goals, since relative goals are difficult to express in an update manner.

These goals could involve the arguments, the extensions, the set of extensions as well as its cardi-
nality, the set of extensions containing a particular argument as well as its cardinality. Hence goals are
represented by expressions involving these notions and that may contain classic comparison operators
(=, <, >, etc.), quantifiers ∀ and ∃, membership (∈) and inclusion (⊆), union (∪) and intersection
(∩) of sets, classical logic operators (∧, ∨,→,↔, ¬). If we associate a propositional formula with an
absolute goal then a goal is satisfied in a graph if the associated formula holds in this graph.

Example 5. We know that O wants to enforce the set {x1}. This goal can be expressed in LArg by the
formula a(x1).
To enforce argument x1 on the Jury’s graph, O can use the program (〈⊕, x5〉, 〈⊕, x3〉) which has the
following impact:

x5 x3 x2

x7 x4 x1 x0

x5 x3 x2

x4 x1 x0
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Another more complex goal could be e.g., ¬a(x4) ∨ a(x0).

We are now able to define formally generalized enforcement.
Requirement: Generalized enforcement is based on a propositional language L able to describe

any argumentation system and its set of accepted arguments, and a characteristic function f associ-
ated with L , such that ∀G ∈ Γ, [f(G)] = {G}.

For instance, LArg of Definition 2 could be used as L . However, LArg does not allow to express
conditions about the cardinality of each extension after enforcement. LArg is only an example that
has been introduced for illustrative purpose. The following results hold for any propositional language
L .

In order to capture classical enforcement we also need to be able to restrict the ways that graphs
are allowed to change. This is done by introducing a set T ⊆ Γ × Γ of allowed transitions between
graphs.

Here are three examples of sets of allowed transitions that could be used:
• If the allowed changes are executable elementary operations for an agent k then T k

e = {(G,G′) ∈
Γ× Γ, ∃o s.t. o is an elementary executable operation by k on G s.t. o(G) = G′}.
• If the allowed changes are executable programs by an agent k then T k

p = {(G,G′) ∈ Γ× Γ, ∃p s.t.
p is an executable program by k on G s.t. p(G) = G′}
• Baumann’s normal expansion can be translated in terms of allowed transitions as follows: TB =
{(G,G′) ∈ Γ×Γ, with G = (A,RA) and G′ = (A′, RA′) s.t. A ( A′}. It means that the transitions
admitted by Baumann’s normal expansion are restricted to the addition of a new set of arguments.

Now, we are in position to define formally a generalized enforcement operator:

Definition 6. A generalized enforcement operator is a mapping relative to a set of authorized transi-
tions T ⊆ Γ× Γ from L ×L → L which associates with any formula ϕ giving information about
a target argumentation system, and any formula α encoding a goal, a formula, denoted ϕ♦Tα, char-
acterizing the argumentation systems in which α holds, that can be obtained by a change belonging
to T .

Example 6. In Example 5 the following result holds: ϕJury♦TO
e
a(x1) |= on(x0) ∧ on(x1) ∧ on(x2)

∧ on(x3) ∧ on(x4) ∧ on(x5) ∧ (on(x7) ∨ ¬on(x7)) ∧ a(x1) ∧ a(x3) ∧ a(x5).

Notation: ∀ϕ,ψ ∈ L , a transition in T is possible between a set of graphs satisfying ϕ to a set
of graphs satisfying ψ, denoted (ϕ,ψ) |= T , iff ([ϕ] 6= ∅ and ∀G ∈ [ϕ], ∃G′ ∈ [ψ], (G,G′) ∈ T ).
In other words, a transition from a given set of graphs towards another set is possible, iff there is a
possible transition from each graph of the first set (which should not be empty) towards at least one
graph of the second set.

4 Generalized Enforcement Postulates

4.1 Background on Belief Change Theory

In the field of belief change theory, the paper of AGM Alchourrón et al. [1985] has introduced the
concept of “belief revision”. Belief revision aims at defining how to integrate a new piece of informa-
tion into a set of initial beliefs. Beliefs are represented by sentences of a formal language. Revision
consists in adding information while preserving consistency.

A very important distinction between belief revision and belief update was first established in Winslett
[1988]. The difference is in the nature of the new piece of information: either it is completing the
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knowledge of the world or it informs that there is a change in the world. More precisely, update is a
process which takes into account a physical evolution of the system while revision is a process taking
into account an epistemic evolution, it is the knowledge about the world that is evolving. In this paper,
we rather face an update problem, since in enforcement, the agent wants to change a graph in order to
ensure that some arguments are now accepted (graphs play the role of worlds, as explained in Section
3)4.

We need to recall some background on belief update. An update operator Winslett [1988]; Katsuno
and Mendelzon [1991] is a function mapping a knowledge base ϕ, expressed in a propositional logic
L , representing knowledge about a system in an initial state and a new piece of information α ∈ L ,
to a new knowledge base ϕ � α ∈ L representing the system after this evolution. In belief update,
the input α should be interpreted as the projection of the expected effects of some “explicit change”,
or more precisely, the expected effect of the action “make α true”. The key property of belief update
is Katsuno and Mendelzon’s Postulate U8 which tells that models of ϕ are updated independently
(contrarily to belief revision). We recall here the postulates of Katsuno and Mendelzon, where L
denotes any propositional language and [ϕ] denotes the set of models of the formula ϕ:5 ∀ϕ,ψ, α, β ∈
L ,

U1: ϕ � α |= α
U2: ϕ |= α =⇒ [ϕ � α] = [ϕ]
U3: [ϕ] 6= ∅ and [α] 6= ∅ =⇒ [ϕ � α] 6= ∅
U4: [ϕ] = [ψ] and [α] = [β] =⇒ [ϕ � α] = [ψ � β]
U5: (ϕ � α) ∧ β |= ϕ � (α ∧ β)
U8: [(ϕ ∨ ψ) � α] = [(ϕ � α) ∨ (ψ � α)]
U9: if card([ϕ]) = 1 then [(ϕ � α) ∧ β] 6= ∅ =⇒ ϕ � (α ∧ β) |= (ϕ � α) ∧ β (where card(E)
denotes the cardinality of the set E)

These postulates allow Katsuno and Mendelzon to write the following representation theorem
concerning update, namely, an operator satisfying these postulates can be defined by means of a
ternary preference relation on worlds (the set of all worlds is denoted by Ω).

Theorem 1 (Katsuno and Mendelzon [1991]). There is an operator � : L ×L → L satisfying U1,
U2, U3, U4, U5, U8, U9 iff there is a faithful assignment that associates with each ω ∈ Ω a complete
preorder, denoted �ω s.t. ∀ϕ, α ∈ L , [ϕ � α] =

⋃
ω∈[ϕ]{ω′ ∈ [α] s.t. ∀ω′′ ∈ [α], ω′ �ω ω

′′}
where an assignment of a preorder �ω to each ω ∈ Ω is faithful iff ∀ω, ω′ ∈ Ω, ω ≺ω ω

′.

This set of postulates has already been broadly discussed in the literature (see e.g., Herzig and Rifi
[1999]; Herzig [2005]; Dubois et al. [1995]). U2 for instance imposes inertia which is not always suit-
able. Herzig [2005] proposes to restrict possible updates by taking into account integrity constraints,
i.e., formulas that should hold before and after update. Dubois et al. [1995] proposes to not impose
inertia and to allow for update failure even if the formulas are consistent. This is done by introducing
an unreachable world called z in order to dispose of an upper bound of the proximity from a current
world to an unreachable world. In the following, as seen in Section 3, we want to restrain the possible
changes. Hence we have to allow for enforcement failure. As we have seen, we choose to introduce
a set of allowed transitions T which restricts possible enforcements. This idea generalizes Herzig

4A revision approach would apply to situations in which the agent learns some information about the initial argumenta-
tion system and wants to correct her knowledge about it. This would mean that the argumentation system has not changed
but the awareness of the agent has evolved.

5Postulates U6 and U7 are not considered here since the set U1-U8 is only related to a family of partial preorders while
replacing U6-U7 by U9 ensures a family of complete preorders.
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[2005] since integrity constraints can be encoded with T (the converse is not possible). Consequently,
we have now to adapt update postulates in order to restrict possible transitions.

4.2 Postulates characterizing enforcement on graphs with transition constraints

We are going to define a set of rational postulates for ♦T . These postulates are constraints that aim
at translating the idea of enforcement. Some postulates coming from update are suitable, namely U1,
since it ensures that after enforcement the constraints imposed by α are true. U2 postulate is optional,
it imposes that if α already holds in a graph then enforcing αmeans no change. This postulate imposes
inertia as a preferred change, this may not be desirable in all situations. U3 transposed in terms of
graphs imposes that if a formula holds for some graphs and if the update piece of information also
holds for some graphs then the result of enforcement should give a non empty set of graphs. Here, we
do not want to impose that any enforcement is always possible since some graphs may be unreachable
from others. So we propose to replace U3 by a postulate called E3 based on the set of authorized
transitions T : ∀ϕ,ψ, α, β ∈ L

E3: [ϕ♦Tα] 6= ∅ iff (ϕ, α) |= T

Due to the definition of (ϕ, α) |= T , E3 handles two cases of enforcement impossibility : no possible
transition and no world (i.e. no graph satisfying ϕ or α).

U4 is suitable in our setting since enforcement operators are defined semantically. U5 is also
suitable for enforcement since it says that graphs enforced by α in which β already holds are graphs
in which the constraints α and β are enforced. Due to the fact that we want to allow for enforcement
failure, this postulate had been restricted to “complete” formulas6.

E5: if card([ϕ]) = 1 then (ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)

U8 captures the decomposability of enforcement with respect to a set of possible input attack graphs.
We slightly change this postulate in order to take into account the possibility of failure, namely if
enforcing something is impossible then enforcing it on a larger set of graphs is also impossible, else
the enforcement can be decomposable:

E8 if ([ϕ] 6= ∅ and [ϕ♦Tα] = ∅) or ([ψ] 6= ∅ and [ψ♦Tα] = ∅)
then [(ϕ ∨ ψ)♦Tα] = ∅
else [(ϕ ∨ ψ)♦Tα] = [(ϕ♦Tα) ∨ (ψ♦Tα)]

Postulate U9 is a kind of converse of U5 but restricted to a “complete” formula ϕ i.e. such that,
card([ϕ]) = 1, this restriction is required in the proof of KM theorem as well as in Theorem 2.

Note that the presence of U1 in the set of postulates characterizing an enforcement operator is not
necessary since U1 can be derived from E3, E5 and E8.

Proposition 1. U1 is implied by E3, E5 and E8.

These postulates allow us to write the following representation theorem concerning enforcement,
namely, an enforcement operator satisfying these postulates can be defined by means of the definition
of a family of preorders on graphs:

Definition 7. Given a set T ⊆ Γ×Γ of accepted transitions, an assignment respecting T is a function
that associates with each G ∈ Γ a complete preorder �G such that ∀G1, G2 ∈ Γ, if (G,G1) ∈ T and
(G,G2) 6∈ T then G2 6�G G1.

6Note that card[ϕ] = 1 iff ∃G ∈ Γ s.t. [ϕ] = [f(G)].
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Theorem 2. Given a set T ⊆ Γ×Γ of accepted transitions, there is an operator ♦T : L ×L → L
satisfying E3, U4, E5, E8, U9 iff there is an assignment respecting T s.t. ∀G ∈ Γ, ∀ϕ, α ∈ L ,
• [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α] s.t.(G,G2) ∈ T,

G1 �G G2}

• [ϕ♦Tα] =

∣∣∣∣ ∅ if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅⋃
G∈[ϕ][f(G)♦Tα] otherwise

The following proposition establishes the fact that 5 postulates are necessary and sufficient to
define an enforcement operator, namely E3, U4, E5, E8 and U9. Indeed, U1 can be derived from them
(as seen in Proposition 1).

Proposition 2. E3, U4, E5, E8, U9 constitute a minimal set: no postulate can be derived from the
others.

From Theorem 2 we can deduce two simple cases of impossibility: if the initial situation or the
goal is impossible then enforcement is impossible (this result is a kind of converse of U3).

Proposition 3. If♦T satisfies E3, U4, E5, E8 and U9 then ([ϕ] = ∅ or [α] = ∅ =⇒ [ϕ♦Tα] = ∅).

The following property ensures that if an enforcement is possible then a more general enforcement
is also possible.

Proposition 4. If ♦T satisfies E3 then ([ϕ] 6= ∅ and [ϕ♦Tα] 6= ∅ =⇒ [ϕ♦T (α ∨ β)] 6= ∅).

Note that there are some cases where U2 does not hold together with E3, U4, E5, E8 and U9. If
U2 is imposed then the enforcement operator is associated with a preorder in which a given graph is
always closer to itself than to any other graph. This is why it imposes to have a faithful assignment.
In that case, the relation represented by T should be reflexive.

Definition 8. A faithful assignment is a function that associates with eachG ∈ Γ a complete preorder
�G such that ∀G1 ∈ Γ, G ≺G G1.

Proposition 5. Given a reflexive relation T ⊆ Γ × Γ of accepted transitions, there is an operator
♦T : L ×L → L satisfying E3, U4, E5, E8, U9 that satisfies U2 iff there is a faithful assignment
respecting T defined as in Theorem 2.

If we remove the constraint about authorized transitions then we recover Katsuno and Mendelzon
theorem, namely:

Proposition 6. If T = Γ × Γ then ♦T satisfies U2, E3, U4, E5, E8, U9 iff ♦ satisfies U1, U2, U3,
U4, U5, U8 and U9.

Among the different kinds of changes proposed by Baumann, the normal expansion, i.e., adding
an argument with the attacks that concern it, could be encoded in our framework as follows:

Remark 1. Baumann’s enforcement by normal expansion is a particular enforcement operator ♦T :
L ×L → L such that T = TB . Moreover, the language used is restricted as follows: the formulas
that describe the initial system are restricted to {ϕ ∈ Lon, card([ϕ]) = 1} and the formulas that
describe the facts that should be enforced are only conjunctions of positive literals of La, where La

and Lon are respectively the propositional languages based only on a(x) and on on(x) variables.
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In Baumann’s framework, the formula concerning the initial graph should be complete, i.e., should
correspond to only one graph. The formula concerning the goal of enforcement should describe a set
of arguments that should be accepted (under a given semantics) after the change. Due to Theorem
2, there exists a family of preorders that could be defined. Baumann proposes to use the following:
G′ �G G′′ iff dist(G,G′) ≤ dist(G,G′′) where dist(G,G′) is the number of attacks that differs in
G and G′.7

5 Conclusion

The work of Baumann [2012] gives the basics about enforcement, our approach investigates several
new issues:
• we propose to take into account the ability to remove an argument, which could help to enforce a set

of arguments with less effort. We also generalize what can be enforced, not only sets of arguments
can be enforced but any goal that can be expressed in propositional logic is allowed.
• we enable the possibility to restrict the authorized changes. In generalized enforcement, authorized

changes may be described by a set of possible transitions. Hence, the structure of the changes can be
restricted (for instance to additions only or to elementary operations) as well as the arguments that
are allowed to be added/removed.

Finally, our main contribution is to state that enforcement is a kind of update, which allows for an
axiomatic approach. This kind of update is more general than classical update since it allows to take
into account transition constraints.

In this paper, for sake of shortness, we use a simplified logical language for describing argumen-
tation systems in our examples, this makes us focus only on changes about arguments hence allow us
to consider a fixed attack relation. However our results hold on any given propositional logic, hence
choosing a logic in which attacks are encoded would enable us to deal with changes on attacks. This
deserves more investigation.

Another issue is to find postulates that are more specific for argumentation dynamics. Indeed,
we have defined a set of postulates that may characterize changes in any kind of graphs that can be
defined in propositional logic, provided that a transition function is given. Further research should take
into account the particularities of the graphs representing argumentation systems (semantics notions
should be introduced in the postulates). Finally, it would be worthwhile to study what could be the
counterpart of enforcement for revision instead of update.

7Note that since Baumann’s enforcement is defined on one graph and not on a set of graphs, then it is also a kind of
belief revision since revision and update collapse when the initial world is completely known (this kind of belief revision
won’t be a pure AGM revision but rather a revision under transition constraints).
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A Proofs

of Property 1. Let G = (A,RA). Let G1 ∈ ΓArg, G1 = (B,RB), s.t. G1 ∈ [fArg(G)]. Using Defini-
tion 3 and Definition 2, ∀x ∈ Arg, x ∈ G iff on(x) is true in G1. Hence, G1 has the same vertices as
G, i.e. B = A. So RB = RA and G1 =G. �

of Proposition 1. ∀ϕ, α ∈ L , if ∃G′ ∈ [ϕ♦Tα] then, due to E3, (ϕ, α) |= T , i.e., [ϕ] 6= ∅ and
∀G ∈ [ϕ], ∃G1 ∈ [α] s.t. (G,G′) ∈ T . Hence using E8, [ϕ♦Tα] = ∪G∈[ϕ][f(G)♦Tα]. Hence there
is a G ∈ [ϕ] s.t. G′ ∈ [f(G)♦Tα]. Due to E5, (f(G)♦Tα) ∧ f(G′) |= f(G)♦T (α ∧ f(G′)). Hence
G′ ∈ [f(G)♦T (α ∧ f(G′))]. Due to E3, (f(G), (α ∧ f(G′)) |= T so [α ∧ f(G′)] 6= ∅. Hence
G′ ∈ [α]. Hence, U1 holds. �

of Theorem 2. The proof is similar to the one done by Katsuno and Mendelzon except that it does not
rely on postulate U2, and use the restricted versions E3, E5 and E8 moreover it takes into account the
set T . Note that this proof uses Proposition 4 which is defined later (but only relies on E3).

1. Let ♦T : L ×L → L be an operator satisfying E3, U4, E5, E8, U9. For any G ∈ Γ, let us define
�G such that G1 �G G2 iff G1 ∈ [f(G)♦T (f(G1) ∨ f(G2))] or [f(G)♦T (f(G1) ∨ f(G2))] = ∅.
We can show that�G is a complete preorder. In the following we abbreviate f(G)♦T (f(Gx)∨f(Gy)
by ♦(x, y) and f(G)♦T (f(G1) ∨ f(G2) ∨ f(G3)) by ♦(1, 2, 3)
• Transitivity: Let us consider G,G1, G2, G3 ∈ Γ, such that G1 �G G2 and G2 �G G3, there are

four cases:
– G1 ∈ ♦(1, 2) and G2 ∈ ♦(2, 3): due to Proposition 4, we get ♦(1, 2, 3) 6= ∅. Hence, due to U1,
[♦(1, 2, 3)] ⊆ {G1, G2, G3}.
∗ if [♦(1, 2, 3)∧ (f(G1)∨f(G2))] = ∅ then [♦(1, 2, 3)] = {G3}, which means that [♦(1, 2, 3)∧
(f(G2) ∨ f(G3))] 6= ∅, hence using both U9 and E5, ♦(1, 2, 3) ∧ (f(G2) ∨ f(G3)) = ♦(2, 3)
this is in contradiction with the hypothesis that G2 ∈ ♦(2, 3).
∗ if [♦(1, 2, 3)∧ (f(G1)∨ f(G2))] 6= ∅ then using E5 and U9, ♦(1, 2) = ♦(1, 2, 3)∧ [(f(G1)∨
f(G2))]. Hence, G1 ∈ ♦(1, 2, 3). Due to E5 and U9 again, ♦(1, 3) = ♦(1, 2, 3) ∧ [(f(G1) ∨
f(G3))], hence G1 ∈ ♦(1, 3).

– ♦(1, 2) = ∅ and G2 ∈ ♦(2, 3): due to the converse of Proposition 4, we get [f(G)♦T f(G2)] =
∅. Now, due to E5, ♦(2, 3) ∧ f(G2) |= f(G)♦T f(G2) hence G2 6∈ ♦(2, 3), contradiction: so
this case never occurs.

– G1 ∈ ♦(1, 2) and ♦(2, 3) = ∅, using Proposition 4, we get that [♦(1, 2, 3)] 6= ∅, from U1,
[♦(1, 2, 3)] ⊆ {G1, G2, G3}. Using E5 and U9, as previously we get that G2 6∈ ♦(1, 2, 3) and
G3 6∈ ♦(1, 2, 3). Hence, [♦(1, 2, 3) ∧ (f(G1) ∨ f(G2))] should contain G1. Using E5 we get
G1 ∈ ♦(1, 3).

– ♦(1, 2) = ∅ and ♦(2, 3) = ∅, using Proposition 4, we get that [f(G)♦T f(G1)] = ∅ and
[f(G)♦T f(G3)] = ∅, using E5 we get that ♦(1, 3) = ∅.
• Reflexivity: ∀G,G1 ∈ Γ, using U1, f(G)♦T f(G1) |= f(G1), hence eitherG1 ∈ [f(G)♦T f(G1)]

or [f(G)♦T f(G1)] = ∅. Hence G1 �G G1.
• Completeness: ∀G,G1, G2 ∈ Γ, if G1 6� G2 then [f(G)♦T (f(G1) ∨ f(G2))] 6= ∅ and G1 6∈
[f(G)♦T (f(G1) ∨ f(G2))], due to U1 it means that G2 ∈ [f(G)♦T (f(G1) ∨ f(G2))]. Hence
G2 �G G1.
• �G respects T : if (G,G1) ∈ T and (G,G2) 6∈ T andG2 �G G1 it means that either [f(G)♦T (f(G1)∨
f(G2))] = ∅ orG2 ∈ [f(G)♦T (f(G1)∨f(G2))]. Due to E3, since (G,G1) ∈ T , [f(G)♦T f(G1)] 6=
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∅. Due to U1, G1 ∈ [f(G)♦T f(G1)]. Hence using E5 and U9, [f(G)♦T (f(G1) ∨ f(G2)) ∧
f(G1)] = [f(G)♦T (f(G1)] = {G1}. Contradiction, hence G1 �G G2.

Let us show now that ∀G ∈ Γ, ∀α ∈ L , [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α],
s.t. (G,G2) ∈ T , G1 �G G2}.
• If G1 ∈ [f(G)♦Tα], due to U1, G1 ∈ [α]. If ∃G2 ∈ [α] s.t. (G,G2) ∈ T and G2 ≺G G1 ,

it means that G1 6∈ [f(G)♦T (f(G1) ∨ f(G2))]. Due to E5, (f(G)♦Tα) ∧ (f(G1) ∨ f(G2)) |=
f(G)♦T (f(G1) ∨ f(G2)) which implies G1 ∈ [f(G)♦T (f(G1) ∨ f(G2))], hence G1 �G G2.
Moreover, due to E5, [(f(G)♦Tα) ∧ f(G1)] ⊆ [f(G)♦T f(G1)], hence G1 ∈ [f(G)♦T f(G1)],
hence (G,G1) ∈ T . Thus [f(G)♦Tα] ⊆ {G1 ∈ [α], (G,G1) ∈ T and ∀G2 ∈ [α] s.t. (G,G2) ∈
T,G1 �G G2}.
• Conversely, let G1 ∈ [α] such that (G,G1) ∈ T and ∀G2 ∈ [α] s.t. (G,G2) ∈ T,G1 �G G2. Let

us first consider G2 ∈ [α] s.t. (G,G2) 6∈ T , Due to E5: [(f(G)♦T (f(G1) ∨ f(G2))) ∧ f(G2)] ⊆
[f(G)♦T f(G2)] and, since (G,G2) 6∈ T , due to E3, [f(G)♦T f(G2)] = ∅. Moreover since
(G,G1) ∈ T , we get using E3 that [f(G)♦T (f(G1) ∨ f(G2)] 6= ∅. Due to U1, [f(G) � (f(G1) ∨
f(G2))] ⊆ {G1, G2}. Hence, [f(G)♦T (f(G1) ∨ f(G2))] = {G1} this result, say (a), holds for
any G2 ∈ [α] s.t. (G,G2) 6∈ T .
Furthermore, due to our hypothesis about G1, ∀G2 ∈ [α] s.t. (G,G2) ∈ T , if [f(G)♦T (f(G1) ∨
f(G2))] 6= ∅ then G1 ∈ [f(G)♦T (f(G1) ∨ f(G2))]. Let us call (b) this result.
Let us denote, without loss of generality, {G1, . . . , Gn} = [α] the set of graphs in which α holds
(this set is finite since Arg is finite and R is fixed).
Due to E3 and U1, since (G,G1) ∈ T andG1 ∈ [α], we get [(f(G)♦Tα)] 6= ∅ and [(f(G)♦Tα)] ⊆
[α] = {G1, . . . , Gn}. Hence, for some k ∈ [1, n], it holds that [(f(G)♦Tα)∧ (f(G1)∨ f(Gk))] 6=
∅. Let us notice that ∀i ∈ [2, n], [α∧ (f(G1)∨ f(Gi)] = [(f(G1)∨ f(Gi)]. Due to U4, we deduce
that [f(G)♦T (α ∧ (f(G1) ∨ f(Gi))] = [f(G)♦T (f(G1) ∨ f(Gi))]
By definition of k, we can apply both E5 and U9, we get [f(G)♦T (f(G1)∨f(Gk))] = [(f(G)♦Tα)∧
(f(G1) ∨ f(Gk))] 6= ∅.
If (G,Gk) 6∈ T then due to (a) we get [((f(G)♦Tα)∧ (f(G1)∨ f(Gk))] = {G1}. If (G,Gk) ∈ T
then due to (b) we get G1 ∈ [((f(G)♦Tα) ∧ (f(G1) ∨ f(Gk))]. In both cases, G1 ∈ [f(G)♦Tα].

Now, if [ϕ] = ∅ then ∪G∈[ϕ][f(G)♦Tα] = ∅. Else let us denote G1, . . . Gn the graphs in which ϕ
holds: [ϕ] = [f(G1) ∨ . . . f(Gn)], using E8, if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅ then [ϕ♦Tα] = ∅
else we get that [ϕ♦Tα] =

⋃
G∈[ϕ][f(G)♦Tα]. Hence, the result.

2. Let�G be a complete preorder on Γ×Γ respecting T , let♦T be defined by ∀G ∈ Γ, [f(G)♦Tα] =
{G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α] s.t. (G,G2) ∈ T , G1 �G G2} and [ϕ♦Tα] = ∅ if
∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅. Otherwise [ϕ♦Tα] =

⋃
G∈[ϕ][f(G)♦Tα]. Let us show that ♦T

satisfies E3, U4, E5, E8 and U9:
• E3: (⇒:) [ϕ♦Tα] 6= ∅ iff [ϕ] 6= ∅ and ∀G ∈ [ϕ], [f(G)♦Tα] 6= ∅. This implies that (ϕ, α) |= T

since it is equivalent to [ϕ] 6= ∅ and ∀G ∈ [ϕ], ∃G′ ∈ [α] s.t. (G,G′) ∈ T . (⇐:) if (ϕ, α) |= T
then [ϕ] 6= ∅ and ∀G ∈ [ϕ], ∃G′ ∈ [α] s.t. (G,G′) ∈ T . Due to the completeness of �G it means
that ∃G1 ∈ [α] such that (G,G1) ∈ T and ∀G′ ∈ [α], G1 �G G′. By definition it means that
[ϕ♦Tα] 6= ∅.
• U4: since the definition of ♦T is only based on the models of ϕ and α, it is easy to check that U4

holds.
• E5: If [(f(G)♦Tα) ∧ β] 6= ∅ then ∃Ga ∈ [f(G)♦Tα] ∩ [β]. Thus, Ga ∈ [β] and Ga ∈ [α] and
(G,Ga) ∈ T and ∀G1 ∈ [α] s.t. (G,G1) ∈ T , Ga �G G1. Hence ∀G2 ∈ [α∧ β] s.t. (G,G2) ∈ T ,
G2 being in [α], it means that Ga �G G2. Hence, Ga ∈ [(f(G)♦T (α ∧ β)].
• E8: by definition
• U9: If [(f(G)♦Tα)∧β] 6= ∅ then let Gb ∈ [f(G)♦T (α∧β)] then Gb ∈ [α∧β] and (G,Gb) ∈ T
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and ∀G1 ∈ [α ∧ β] s.t. (G,G1) ∈ T , Gb �G G1. Now let Ga ∈ [f(G)♦Tα) ∧ β], it means that
Ga ∈ [α ∧ β] and (G,Ga) ∈ T , hence Gb �G Ga. Moreover, by definition of Ga, ∀G1 ∈ [α] s.t.
(G,G1) ∈ T , Ga �G G1. Thus, by transitivity, ∀G1 ∈ [α] s.t. (G,G1) ∈ T , Gb �G G1. Thus,
Gb ∈ [f(G)♦Tα) ∧ β].

�

of Proposition 2. Let us recall the set of postulates: ∀ϕ,ψ, α, β ∈ L ,

E3: [ϕ♦Tα] 6= ∅ iff (ϕ, α) |= T
U4: [ϕ] = [ψ] and [α] = [β] =⇒ [ϕ � α] = [ψ � β]
E5: If card([ϕ]) = 1 then (ϕ♦Tα) ∧ β |= ϕ♦T (α ∧ β)
E8: if ([ϕ] 6= ∅ and [ϕ♦Tα] = ∅) or ([ψ] 6= ∅ and [ψ♦Tα] = ∅) then [(ϕ ∨ ψ)♦Tα] = ∅ else
[(ϕ ∨ ψ)♦Tα] = [(ϕ♦Tα) ∨ (ψ♦Tα)]

U9: If card([ϕ]) = 1 then if [(f(G)♦Tα) ∧ β] 6= ∅ then [(ϕ♦Tα) ∧ β] 6= ∅ =⇒ ϕ♦T (α ∧ β) |=
(ϕ♦Tα) ∧ β

In order to prove this result we have to provide for each postulate an operator satisfying the other
postulates but not this one.

Independency of E3: Let ♦T be such that ∀ϕ, α ∈ L , if (ϕ, α) 6|= T then [ϕ♦Tα] = [α] else
[ϕ♦Tα] = ∅.
E3 does not hold.
U4 holds: since we define ♦T only from the models of ϕ and α.
E5 holds: since if (f(G), α) |= T then [f(G)♦Tα] = ∅, hence U5 holds, else [f(G)♦Tα] = [α]
and (f(G), α) 6|= T which implies (f(G), α ∧ β) 6|= T , hence [f(G)♦T (α ∧ β)] = [α ∧ β] hence
E5 holds.
E8 holds: If ϕ 6= ∅ and [ϕ♦Tα] = ∅ then (ϕ, α) |= T , which implies (ϕ ∨ ψ, α) |= T , hence
[(ϕ∨ψ)♦Tα] = ∅ (E8 holds). Else (ϕ, α) 6|= T and (ψ, α) 6|= T , thus (ϕ∨ψ, α) 6|= T which means
[ϕ ∨ ψ♦Tα] = [α] = [ϕ♦Tα] = [ψ♦Tα].
U9 holds: If [(ϕ♦Tα)∧β] 6= ∅ then it means that [(ϕ♦Tα) 6= ∅ hence (ϕ, α) 6|= T , i.e., [(ϕ♦Tα) =
[α], so [(ϕ♦Tα) ∧ β] = [α ∧ β]. Moreover, (ϕ, α) 6|= T implies (ϕ, α ∧ β) 6|= T . This means that
[ϕ♦T (α ∧ β)] = [α ∧ β]. Hence the result.

Independency of U4: Given a formulaα ∈ L and a graphG ∈ Γ, let us denote by rG(α) the number
of the first literal in α that holds in G. Let ♦T be such that ∀G ∈ Γ, [f(G)♦Tα] = {G1 ∈ [α] s.t.
(G,G1) ∈ T and for any other graph G2 ∈ [α] s.t. (G,G2) ∈ T , rG2(α) ≥ rG1(α)}. And
[ϕ♦Tα] = ∅ if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅ otherwise[ϕ♦Tα] = ∪G∈[ϕ][f(G)♦Tα].
E3 holds.
U4 does not hold: let us consider L based on Arg = {a, b} and three graphsG,G1, G2 s.t. f(G1) =
on(a)∧¬on(b) and f(G2) = ¬on(a)∧ on(b), let us suppose that T contains at least the transitions
(G,G1) and (G,G2). If we set α = f(G1) ∨ f(G2) and β = f(G2) ∨ f(G1), then it leads to
[f(G)♦Tα] = {G1} and [f(G)♦Tβ] = {G2}.
E5 and U9 hold since the ordering of the literals is not changed in the conjunction.
E8 holds by definition.

Independency of E5: Let ♦T be such that ∀ϕ, α ∈ L , ∃G0 ∈ Γ s.t. if (ϕ, α) |= T then [ϕ♦Tα] =
{G0} else [ϕ♦Tα] = ∅.
E3 holds.
U4 holds.
E5 does not hold: since ∀G1 ∈ Γ such that G1 6= G0 and ∀G ∈ Γ s.t. (G,G1) ∈ T , we have
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[f(G)♦T f(G1)] = {G0}, hence [(f(G)♦T f(G1)) ∧ f(G0)] = {G0}, while [f(G)♦T (f(G1) ∧
f(G0))] = ∅ (since [f(G1) ∧ f(G0)] = ∅, which implies that (f(G), f(G1) ∧ f(G)) 6|= T ).
E8 holds: If ϕ 6= ∅ and [ϕ♦Tα] = ∅ then (ϕ, α) 6|= T , which implies (ϕ ∨ ψ, α) 6|= T , hence
[(ϕ∨ψ)♦Tα] = ∅ (E8 holds). Else (ϕ, α) |= T and (ψ, α) |= T , thus (ϕ∨ψ, α) |= T which means
[ϕ ∨ ψ♦Tα] = {G0} = [ϕ♦Tα] = [ψ♦Tα].
U9 holds: If [(ϕ♦Tα) ∧ β] 6= ∅ then it means that [ϕ♦Tα] 6= ∅ hence (ϕ, α) |= T , i.e., [ϕ♦Tα] =
{G0}. Hence G0 ∈ [β], this means that (ϕ, α∧ β) |= T , hence [ϕ♦T (α∧ β)] = {G0}. Thus we get
the result.

Independency of E8: Let ♦T be such that ∀ϕ, α ∈ L , ∃G1, G2 ∈ Γ, s.t. G1 6= G2 and if (ϕ, α) |=
T and Card([ϕ]) = 1 then [ϕ♦Tα] = {G1}, if (ϕ, α) |= T and Card([ϕ]) 6= 1, [ϕ♦Tα] = {G2},
otherwise [ϕ♦Tα] = ∅.
E3 holds.
U4 holds.
E5 holds: if G1 ∈ [(f(G)♦Tα)∧β], then [f(G)♦Tα] = {G1} hence G1 ∈ [β] and (f(G), α) |= T .
Thus, (f(G), α ∧ β) |= T hence [f(G)♦T (α ∧ β)] = {G1}. Hence the result.
E8 does not hold: the first part of E8 may hold but when Card([ϕ]) = Card([ψ]) = 1 and ϕ♦Tα 6=
∅ and ψ♦Tα 6= ∅ then we have [(ϕ ∨ ψ)♦Tα] = {G2} while [ϕ♦Tα] = [ψ♦Tα] = {G1}. Hence
E8 does not hold.
U9 holds: Same method as the one for U5.

Independency of U9: Let ♦T be such that ∀ϕ, α ∈ L , ∃G0 ∈ Γ, if (ϕ, α) |= T then (if [α] 6= Γ
then [ϕ♦Tα] = [α] else [ϕ♦Tα] = {G0}) otherwise [ϕ♦Tα] = ∅.
E3 holds
U4 holds.
E5 holds: if G1 ∈ [(f(G)♦Tα) ∧ β] then if [α] 6= Γ then G1 ∈ ([α] ∩ [β]). Hence, [α ∧ β] 6= ∅
and [α ∧ β] 6= Γ, it means that [f(G)♦T (α ∧ β)] = [α ∧ β], hence E5 holds. Now, if [α] = Γ then
[(f(G)♦Tα)∧ β] = {G0} ∩ [β], this means that G1 = G0 and G0 ∈ [β], hence G0 ∈ [α∧ β]. Now,
either [α ∧ β] = Γ and [f(G)♦T (α ∧ β)] = {G0}, or α ∧ β 6= Γ and [f(G)♦T (α ∧ β)] = [α ∧ β].
In both cases, E5 holds.
E8 holds: the definition of ♦T does not depend on the first parameter (except for detecting failure)
hence E8 holds (same kind of proof as for E5 independency).
U9 does not hold: For instance let us consider G1 ∈ Γ such that G1 6= G0 and (ϕ, f(G1)) |= T ,
we have [(ϕ♦T>) ∧ (f(G0) ∨ f(G1))] 6= ∅ while [ϕ♦T (> ∧ (f(G0) ∨ f(G1))] = {G0, G1} 6⊂
[(ϕ♦T>) ∧ (f(G0) ∨ f(G1)] = {G0}.

�

of Proposition 3. The proof is straightforward from the equation relating ♦T and � in Theorem 2. �

of Proposition 4. Let ϕ, α ∈ L s.t. [ϕ] 6= ∅ and [ϕ♦Tα] 6= ∅ and ♦T satisfies E3. It means that
(ϕ, α) |= T , i.e., ∀G ∈ [ϕ], ∃G1 ∈ [α], (G,G1) ∈ T . Now, ∀β ∈ L , [α] ⊆ [α ∨ β], hence
G1 ∈ [α ∨ β]. This means that (ϕ, α ∨ β) |= T . Using E3, we get [ϕ♦T (α ∨ β)] 6= ∅. �

of Proposition 5. Let T be a reflexive relation on Γ× Γ.
1. Let ♦T : L × L → L be an operator satisfying U2, E3, U4, E5, E8, U9. For any G ∈ Γ,

let us define �G such that G1 �G G2 iff G1 ∈ [f(G)♦T (f(G1) ∨ f(G2))] or [f(G)♦T (f(G1) ∨
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f(G2))] = ∅. Due to Theorem 2, �G is a complete preorder on Γ respecting T . ∀G1 ∈ Γ,
let us compute [f(G)♦T (f(G) ∨ f(G1))]. Due to U2, since f(G) |= f(G) ∨ f(G1), we have
[f(G)♦T (f(G) ∨ f(G1))] = [f(G)]. Hence, G ≺G G1. It means that the assignement is faithful.

2. ∀G ∈ Γ, let �G be a complete preorder on Γ× Γ respecting T , and such that ∀G1, G ≺G G1. Let
♦T be defined by ∀G ∈ Γ, [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α], G1 �G G2}
and [ϕ♦Tα] = ∅ if ∃G ∈ [ϕ] s.t. [f(G)♦Tα] = ∅. Otherwise [ϕ♦Tα] =

⋃
G∈[ϕ][f(G)♦Tα]. Due

to Theorem 2, ♦T satisfies U1, E3, U4, E5, E8 and U9. Let us check if U2 holds: let ϕ, α ∈ L ,
such that ϕ |= α.

(a) If [ϕ] = ∅ then due to Proposition 3 [ϕ♦Tα] = ∅ (hence U2 holds).
(b) If [ϕ] 6= ∅ then let G ∈ [ϕ], [f(G)♦Tα] = {G1 ∈ [α] s.t. (G,G1) ∈ T and ∀G2 ∈ [α] s.t.

(G,G2) ∈ T , G1 �G G2}. Since ϕ |= α, it meant that G |= α. Moreover since T is reflexive then
(G,G) ∈ T , lastly, due to faithfulness, ∀G1, G ≺G G1. Hence G ∈ [f(G)♦Tα] and ∀G1 6= G,
G1 6∈ [f(G)♦Tα]. It means that [f(G)♦Tα] = {G} = [f(G)]. This is true for any G ∈ [ϕ], hence⋃

G∈[ϕ][f(G)♦Tα] =
⋃

G∈[ϕ][f(G)] = [ϕ] (hence U2 holds).
�

of Proposition 6. Let T = Γ× Γ
1. Let ♦T be an operator satisfying U2, E3, U4, E5, E8, U9, let us show that it satisfies U1, U3, U5

and U8.

U1 This is due to Proposition 1.
U3 If [ϕ] 6= ∅ then due to E3, [ϕ♦Tα] 6= ∅ iff (ϕ, α) ∈ T . Hence, T being equal to Γ × Γ, if
[α] 6= ∅ then (ϕ, α) ∈ T thus [ϕ♦Tα] 6= ∅.

U5 This is due to U8 and E5.
U8 If [ϕ♦Tα] = ∅ or [ψ♦Tα] = ∅ then, due to E8, we have [(ϕ ∨ ψ)♦Tα] = ∅, hence U8 holds.
If [ϕ♦Tα] 6= ∅ and [ψ♦Tα] 6= ∅ then, due to E8, U8 holds.

2. Let ♦T be an operator satisfying U1, U2, U3, U4, U5, U8 and U9 let us show that it satisfies E3,
E5 and E8

E3 When T = Γ× Γ, (ϕ, α) ∈ T ⇔ [α] 6= ∅, hence the result.
E5 It is a particular case of U5.
E8 If ([ϕ] 6= ∅ and [ϕ♦Tα] = ∅) then due to U3 it means that [α] = ∅, hence, due to U1,
[(ϕ ∨ ψ)♦Tα = ∅. (E8 holds).
Now, if [ϕ] = ∅ and [α] 6= ∅ then, due to U3, [ϕ♦Tα] 6= ∅, idem for ψ. It means that the other
case is when [ϕ♦Tα] 6= ∅ and [ψ♦Tα] 6= ∅ in that case U8 applies hence E8 holds.

�
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